

The Canon Camera Hackers Manual

Berthold Daum

The Canon Camera Hackers Manual

Teach Your Camera New Tricks

Berthold Daum, berthold.daum@bdaum.de

Editor: Gerhard Rossbach
Production Editor: Jimi DeRouen
Copyeditor: Cynthia Anderson
Layout and type: Petra Strauch, just-in-print@gmx.de
Cover design: Helmut Kraus, www.exclam.de
Printer: Malloy, Ann Arbor, Michigan
Printed in USA

ISBN 978-1-933952-58-1

1st Edition
© 2010 Berthold Daum
Rocky Nook, Inc.
26 West Mission Street, Ste 3
Santa Barbara, CA 93101-2432

www.rockynook.com

Library of Congress Cataloging-in-Publication Data

Daum, Berthold, 1949-
 The Canon camera hackers manual / Berthold Daum.
 p. cm.
 Includes bibliographical references.
 ISBN 978-1-933952-58-1 (alk. paper)
1. Canon digital cameras--Automatic control. 2. Digital cameras--Modification. I. Title.
 TR263.C3D37 2010
 771.3’3--dc22
 2010005926

Distributed by O‘Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

All product names and services identified throughout this book are trademarks or regis-
tered trademarks of their respective companies. They are used throughout this book in
editorial fashion only. No such uses, or the use of any trade name, are intended to convey
endorsement or other affiliation with the book. No part of the material protected by this
copyright notice may be reproduced or utilized in any form, electronic or mechanical, in-
cluding photocopying, recording, or by any information storage and retrieval system,
without written permission of the copyright owner. While reasonable care has been ex-
ercised in the preparation of this book, the publisher and authors assume no responsibil-
ity for errors or omissions, or for damages resulting from the use of the information
contained herein.

All photographs and illustrations by the author.

This book is printed on acid-free paper.

TABLE OF CONTENTS v

Table of Contents

1 Introduction . 1

2 Cameras and Operating Systems . 3

2.1 Camera hardware . 3

2.2 Processors and operating systems . 5

2.3 The CHDK: What it is and how it works . 5

2.3.1 History . 5

2.3.2 How it works . 6

2.3.3 What the CHDK can do for you . 7

3 Installing the CHDK . 11

3.1 Requirements . 11

3.2 Does a CHDK exist for my camera? . 11

3.3 Downloading the CHDK . 12

3.4 Manual installation . 13

3.5 The warranty question . 14

4 Teach Your Camera New Tricks . 17

4.1 Using menus . 17

4.2 Customizing the user interface . 18

4.2.1 OSD Codepage . 18

4.2.2 Fonts . 18

4.2.3 Colors . 19

4.2.4 Organizing the screen . 19

4.2.5 User menus . 22

4.2.6 Grids . 22

4.2.7 Miscellaneous Values. 24

4.2.8 Customizing the DOF calculator . 26

4.2.9 Other user interface options . 27

4.3 Exposure . 28

4.3.1 Overrides . 28

4.3.2 Custom Auto ISO . 31

4.3.3 Histogram . 33

4.3.4 Zebra . 35

4.3.5 High-speed photography . 36

vi TABLE OF CONTENTS

4.3.6 Night photography . 38

4.3.7 Flash . 40

4.3.8 Using curves . 41

4.4 Focus . 45

4.5 Shooting RAW . 46

4.5.1 Basics . 46

4.5.2 DNG . 48

4.5.3 Other RAW parameters . 50

4.5.4 Processing RAW images . 51

4.5.5 In-camera RAW processing . 52

4.5.6 More RAW processing . 53

4.6 Bracketing . 55

4.6.1 General bracketing notes . 55

4.6.2 HDR and tone mapping . 57

4.6.3 Focus stacking . 60

4.7 Edge overlay . 63

4.8 More video options. 64

4.9 Remote control. 66

4.9.1 CHDK remote control functions. 66

4.9.2 Building a simple remote control . 67

4.9.3 SDM functions . 68

4.9.4 Extra hardware . 69

4.9.5 Tethered shooting? . 69

4.10 Utilities . 70

4.10.1 File browser . 70

4.10.2 Text file reader . 71

4.10.3 Getting information about the camera . 72

4.11 Novelty . 73

4.11.1 Games . 73

4.11.2 Flashlight . 74

4.12 The CHDK configuration file . 74

5 Scripting . 77

5.1 Launching and configuring scripts . 77

5.2 uBasic . 79

5.3 uBasic primer . 85

5.3.1 Variables . 85

5.3.2 Assignments . 85

5.3.3 Output . 86

5.3.4 Conditional clauses . 86

5.3.5 Case structures . 87

TABLE OF CONTENTS vii

5.3.6 Loops . 88

5.3.7 Labels and GOTOs . 89

5.3.8 Subroutines . 90

5.3.9 Comments . 91

5.3.10 Script structure . 91

5.4 Lua primer . 92

5.4.1 Variables . 92

5.4.2 Strings . 93

5.4.3 Tables . 93

5.4.4 Assignments . 94

5.4.5 Output . 94

5.4.6 Blocks . 95

5.4.7 Conditional clauses . 95

5.4.8 Loops . 96

5.4.9 Functions . 99

5.4.10 Error handling . 100

5.4.11 Comments . 101

5.4.12 Script structure . 101

5.4.13 Standard Libraries . 101

5.5 CHDK commands . 112

5.5.1 Button-related commands: . 112

5.5.2 Exposure-related commands . 114

5.5.3 Focus-related commands . 119

5.5.4 Zoom-related commands . 120

5.5.5 Flash-related commands . 121

5.5.6 Image-related commands . 121

5.5.7 Time-related commands . 122

5.5.8 Display-related commands . 122

5.5.9 Image management commands . 123

5.5.10 Camera state . 124

5.5.11 Low-level commands (Lua only) . 126

5.5.12 The library capmode.lua (Lua only) . 127

5.6 Property Cases . 128

5.7 Example scripts . 139

5.7.1 Time machines . 140

5.7.2 Bracketing . 159

5.7.3 Motion detection . 164

5.7.4 Exposure control . 180

5.7.5 Remote control. 182

5.7.6 Configuration switching . 186

5.8 Script development . 194

viii TABLE OF CONTENTS

6 Advanced Techniques . 197

6.1 Panoramas . 197

6.2 HDR Panoramas . 200

6.3 HDR videos . 203

7 The Stereo Data Maker (SDM) . 205

7.1 Installing the SDM . 205

7.2 Restrictions . 207

7.3 Additional functions . 207

7.4 Operation . 208

7.5 Remote control. 209

7.6 Communications . 211

7.6.1 USB upload . 211

7.6.2 Serial communications . 211

7.7 Stereo photography . 212

7.7.1 Stereo photography with a single camera . 213

7.7.2 Producing and viewing composite stereo images 217

7.7.3 Stereo focus stacking . 217

7.7.4 Synchronized cameras . 218

7.7.5 Synchronized flash . 221

7.8 Digiscoping . 222

7.9 Scripting . 224

8 Kites, Balloons, and Multikopters . 231

8.1 Kite Aerial Photography . 231

8.2 Balloon-based photography . 232

8.3 Motorized flying platforms . 233

8.4 Other unattended operations . 233

9 A Look across the Fence . 235

9.1 Canon EOS CHDK . 235

9.2 Canon 5D as a professional movie camera 235

9.3 Pentax hacks . 236

Appendix . 237

A.1 Using cards with more than 4 GB capacity 237

A.2 Troubleshooting . 239

A.3 Web links . 241

A.4 Contributing to the CHDK . 242

A.5 Bibliography . 243

Index . 245

 1

1 Introduction

On Sept. 2, 2009, a group of MIT students launched a balloon with a digital
camera into near space to take photographs of the earth (http://
space.1337arts.com). Five hours later, the camera returned from the flight,
having reached a height of 17.5 miles. All of the equipment was put to-
gether from off-the-shelf components (balloon, parachute, camera, GPS
tracker, etc.) and did not cost more than $150. Several missions similar to
this one had been completed before by other groups, but not at such a low
cost. For example, in 2008, an Italian group launched a digital camera into
space taking both photos and videos (http://www.francescobonomi.it/
ICBNN).

Both projects used Canon compact cameras for taking pictures. The MIT
students used a Canon A470, the Italian group a Digital Elph SD 1100 IS (Ixus
80 IS). In addition, both cameras were equipped with the CHDK, the Canon
Hack Development Kit. Despite its intimidating name, the CHDK is a ready-
to-run piece of software that can be installed on the camera’s memory card
and that enhances the camera with many new features. In the above-
mentioned space missions, the CHDK determined when to begin shooting
and in what intervals. In the case of the SD 1100 IS, the CHDK also ran a
 shutter priority exposure program that the camera normally does not offer.

These are only a few tricks that the CHDK has up its sleeve. RAW shoot-
ing, live histograms, remote control, ultrashort and ultralong exposure
times, time-lapsing, motion detection, exposure and focus bracketing,
camera automation with scripts, and, and, and… More than a few high-
priced DSLRs would be proud to have such features. No wonder the CHDK
has hit the columns of nearly every photography-related magazine and
e-zine around the world.

Today, the CHDK can be regarded as a mature product that is robust
enough for the most demanding missions. It is available in many languages.
The documentation, too, such as manuals and tutorials, is rapidly improving.
There is a lively online community at http://chdk.setepontos.com/.

How this book is organized
We start with an introduction to Canon compact cameras and the operat-
ing systems they use. An introduction to the CHDK—what it is and why
you should use it—completes chapter 2.

2 CHAPTER 1 Introduction

Chapter 3 deals with how to install the CHDK—both utility-augmented
installation on a PC and manual installation by utilizing camera functions.

Chapter 4 discusses the out-of-the-box functions of the CHDK. First, we
examine how to tame the beast—at times, the information overflow can
be overwhelming. Then we unleash it again: advanced exposure control,
ultrashort and ultralong exposure times, manual focusing, shooting RAW,
 bracketing, edge overlay, remote control, etc.

Chapter 5 then turns your camera into a robot via scripting in uBasic
and Lua. After short introductions to these programming languages, we
discuss scripts for time lapse, bracketing, motion detection, exposure con-
trol, and configuration switching.

Chapter 6 covers some advanced techniques: large panoramas, super-
wide-angle shots, and combining High Dynamic Range (HDR) photography
with panoramas and time-lapse movies.

A CHDK spin-off, the Stereo Data Maker (SDM) is discussed in chapter 7.
Shooting 3D stereo images is an important topic in this chapter, along with
the strong capabilities of the SDM for remote photography, communica-
tion with external devices, and Digiscoping.

Application of the SDM (and CHDK) to areas such as Kite Aerial Photog-
raphy (KAP), balloon-based photography, and other remote platforms is
discussed in chapter 8.

Chapter 9 takes a short look at similar “camera enhancement” projects,
such as the EOS-CHDK, MagicLantern (which turns the Canon EOS 5D into
a professional movie camera), and the Pentax project.

Finally, the appendix contains information on using memory cards of
more than 4 GB with the CHDK. There is a section with important web links
and another section with tips in case you run into trouble. Finally, you’ll
find out how to contribute to the further development of the CHDK.

Acknowledgments
First and foremost, I wish to thank the publishers. Thanks go to my lector,
René Schönfeld, at dpunkt.verlag Heidelberg for co-parenting the idea of
writing a book about the CHDK; and to Gerhard Rossbach, publisher at
Rocky Nook, Santa Barbara, for his enthusiasm. Copyediting was done by
Cynthia Anderson, typesetting and graphic design by Petra Strauch, Just in
Print. Thanks go also to Alice Philipp, my partner in life, for her patience and
support.

This book would not have been possible without the many volunteers
who have contributed to the CHDK in various forms: the initial creators of
the CHDK core, VitalyB and GrAnd; later contributors such as Fingalo,
Juciphox, MicroFunguy, and others; the volunteers who ported (and con-
tinue to port) the CHDK to new cameras; the many script, documentation,
and utility authors; and the whole vibrant CHDK community that contin-
ues to improve an already strong product. With this book, I hope to give
something back to the community.

2.1 Camera hardware 3

2 Cameras and Operating
Systems

Before turning to the virtues of the CHDK, let’s first have a look at some of
the platforms the CHDK runs on. As its name suggests, the CHDK runs on
Canon cameras. Specifically, the classic form of the CHDK runs on Canon
compact cameras, such as Powershot and Digital Elph (Digital IXUS). For the
still-experimental (at time of writing) EOS-CHDK, please see section 9.1.

2.1 Camera hardware

Practically all digital Canon compact cameras (and all of the newer camera
models) are equipped with a zoom lens, allowing for an optical zoom range
from 1:3 to 1:20+. The optical zoom can be extended via an optional digital
zoom. All zoom lenses are equipped with a macro function, which again
can be extended with a digital macro. Digital zoom and digital macro come
at a cost, however: they reduce image resolution because only a part of the
sensor is used for the final image.

Most Canon cameras are equipped with an optical image stabilizer;
usually, these cameras carry the suffix “IS” in their name. “Optical” means
that a lens element is moved to counteract camera shake. With this tech-
nique, it is possible to increase exposure times by a factor of 2–16
(1–4 f-stops) when shooting without a tripod. An image stabilizer is a very
useful feature, especially for telephoto shots and for shooting in low light
conditions.

Most Canon cameras use CCD (charge coupled device) type sensors;
only a few use CMOS type sensors. Smaller models have sensors with a
diameter of 1/2.5 inch (10 mm), while larger models have sensors with a
diameter of 1/1.7 inch (14.9 mm). The focal length conversion factors are
6.2 and 4.6 respectively, compared to the 35mm format.

For most Canon cameras, the resulting image is delivered in the form of
a JPEG file with selectable resolutions and formats, and selectable com-
pression ratios. Top-range cameras offer an option to deliver the RAW sen-
sor data, too. Actually, the prime motivation behind the development of
the CHDK was to enable smaller, low-cost cameras to deliver sensor data in
RAW format. It should be mentioned that digital zoom and digital macro
do not work with RAW format; the format delivers the pure sensor data
without any post-processing.

4 CHAPTER 2 Cameras and Operating Systems

For the smaller models—especially the Digital Elph (Ixus) series—the
shutter mechanism consists of a simple mechanical shutter plus an elec-
tronic shutter. Because the circuitry for the electronic shutter requires
some space on the sensor chip, less sensor area is left for the light-sensitive
parts—resulting in a less than optimal signal-to- noise ratio compared to a
DSLR. Therefore, the top-of-the-range Powershot models, such as the
G-series, use a mechanical shutter in order not to sacrifice valuable sensor
real estate.

Similarly, the lenses of the low-cost cameras are not equipped with a
diaphragm but rather with an ND (neutral density) filter that is switched
on when the scene becomes too bright. Because the lens is always used at
full aperture, it is not possible to increase the depth of sharpness (DOF) by
stopping down with these cameras. Variations in brightness and shutter
speed are compensated for by the ND filter and by changing the sensor’s
sensitivity (ISO speed). Higher-priced cameras are equipped with a tradi-
tional diaphragm.

All Canon cameras are, of course, equipped with autofocus (AF) and
automatic exposure (AE) control. Newer models even have face detection.
Only the top-range models allow for manual control of focus, shutter
speed, aperture, and ISO. With the CHDK, manual control of focus and ex-
posure is achieved for all models—within the physical limits of the camera,
of course.

All Canon cameras are equipped with an internal flash unit. Some larger
cameras offer the option of connecting an external flash as well. Unfortu-
nately, not all cameras allow fine-tuned manual control of the flash power.
As a result, flash images can often look unnatural and flat. In many cases,
the flash is too bright. The CHDK allows a manual flash on all models with
three different power settings, resulting in more natural-looking flash
images.

All Canon cameras are equipped with a video function, in some cases an
HD video function. Because the camera’s image sensor has a much higher
resolution than a video frame, digital zoom (Digital Converter) can be uti-
lized to a certain degree for video shots without losing quality. In most
cases, the optical zoom is disabled during video shooting, as the zoom mo-
tor’s noise would ruin the soundtrack. With the CHDK, this behavior can be
overridden (for some cameras) and the optical zoom can be used while
shooting video (section 4.8). Some editing will be required, however, for the
soundtrack.

The built-in audio facility (microphone and audio digitizer) that is used
for the video soundtrack can be used for photos, too. Voice notes can be
attached to photos, or the camera can be utilized as a dictating machine.

2.2 Processors and operating systems 5

2.2 Processors and operating systems

Since 2002, Canon has used the DIGIC processor in all of its digital cameras,
including the EOS DSLRs. The original DIGIC processor was followed in 2004
by the DIGIC II processor, which combines all functions on a single chip (the
original processor needed three chips). DIGIC II was followed in 2007 by
DIGIC III, which brought new features such as face recognition and iSAPS
scene-recognition technology. DIGIC IV was introduced in 2008 and fea-
tures faster and better image processing and live face detection.

DIGIC II and some DIGIC III processors are equipped with the VxWorks
operating system from Wind River Systems. In 2007, Canon introduced its
own operating system called DryOS that has been used since then on most
DIGIC III and DIGIC IV platforms. DryOS can run on more than 10 different
processor types.

Compact cameras using the DryOS are: A470, A480, A580, A590 IS,
A650 IS, A720 IS, A1000 IS, A1100 IS, A2000 IS, A2100 IS, D10, E1, G9, G10,
G11, SD1100 IS (IXUS80 IS), SD770 IS (IXUS85 IS), SD780 IS (IXUS100IS),
SD790 IS (IXUS90 IS), SD1200 IS (IXUS95 IS), SD960 IS (IXUS110 IS), SD940 IS
(IXUS120 IS), SD980 IS (IXUS200 IS), SD870 IS (IXUS860 IS), SD880 IS
(IXUS870 IS), SD950 IS (IXUS960 IS), S5 IS, S90, SX1 IS, SX10 IS, SX20 IS,
SX100 IS, SX110 IS, and SX200 IS.

The distinction between the operating systems is important because
some CHDK scripting functions depend on the operating systems. Scripts
utilizing these functions usually run only on the platform they were devel-
oped for, or they must implement special provisions for cross-platform op-
eration. Developing platform-dependent scripts is fine for home use. When
publishing scripts for a larger audience, however, portable scripts are defi-
nitely the preferred solution. Newer versions of the CHDK allow access to
most camera functions in a platform-independent way, so that with some
care, portable scripts can be developed without much difficulty.

2.3 The CHDK: What it is and how it works

2.3.1 History

The development of the CHDK began in 2006 with the Russian program-
mer VitalyB. Studying the disassembly of a firmware upgrade for a Canon
IXUS camera, he was able to analyze the upgrade process and write a pro-
gram that would boot from the card and take control of the camera. With
the help of this program, he was able to read out (dump) the original Canon
operating system from the camera to a PC. Data transfer used the blue
camera LED and a phototransistor, a method still employed today with
some cameras.

Figure 2-1

The CHDK logo shows up during the

boot process of the CHDK. The logo

display can be switched off via the

CHDK menu function ALT > MENU >

Miscellaneous Stuff > Show Splash

Screen on Load.

6 CHAPTER 2 Cameras and Operating Systems

The first build of the CHDK enabled the camera (an A610) to deliver
 RAW 10-bit sensor data in combination with JPEG images, allowing true
RAW processing for a consumer camera. Apart from the RAW format, this
first version supported live histograms, scripting, and three- exposure
bracketing. Scripting was made possible through the inclusion of the
 uBasic interpreter, created earlier by Swedish programmer Adam Dunkel.

The program proved so useful that versions for other cameras soon
followed. This was first done for cameras with the VxWorks operating sys-
tem; cameras with the DryOS operating system should follow later. For
each camera (in fact, for each firmware version), it is necessary to read out
the firmware from the camera and analyze it in order to link the additional
 functions to the original firmware (section A.4).

In 2007, another programmer, GrAnd, joined the CHDK community and
added numerous features such as the on-screen display (OSD) of focal dis-
tance, zoom step and factor, hyperfocal distance, DOF calculator, shadow
and highlight clipping warnings, battery meter, and much more. An article
in DP Review about the new features brought public attention to the CHDK.

More developers joined the CHDK community. This initially resulted in
different branches of the CHDK, each with its own set of special functions.
Particularly notable are MX3’s build with motion detection, Fingalo’s build
with much-improved uBasic scripting functionality and USB support, and
Juciphox’s build with support for Lua scripting. Today, the official CHDK—
the MoreBest build—integrates many of these additional functions.

2.3.2 How it works

Canon cameras perform several steps when switched on:

 f First, the camera’s firmware checks the memory card. If the card is
write-protected, and if it contains a file named DISKBOOT.BIN in its root
directory, then this file is loaded and executed. This allows almost any
program in the camera to be infiltrated.

 f If such a file is not found, the normal start-up process continues. This
includes the launch of four different native tasks that run in parallel and
manage the different units of the camera:

 g The Logging task takes care of the camera’s display unit. It is re-
sponsible for presenting information to the user.

 g The Keyboard task monitors the camera’s buttons for key presses.

 g The Image-capturing task is responsible for exposure and focus
control and for reading the data from the sensor.

 g The File-system task is responsible for writing images to the mem-
ory card and managing the card’s file system.

2.3 The CHDK: What it is and how it works 7

The CHDK adds an additional task that manages the CHDK functions. In
addition, the CHDK needs hooks in the native tasks to communicate with
them. Therefore, the CHDK loader embodied in the file DISKBOOT.BIN per-
forms the following steps:

 f Copies the core CHDK code into a suitable memory location within the
camera. Of course, this is only possible if the camera has enough free
memory. On some cameras this is not the case, and limited or no CHDK
support is possible.

 f Restarts the camera with the CHDK code as the entry point. Instead of
the native boot process, the CHDK boot process is now performed. This
process will:

 g Launch the CHDK task.

 g Add hooks to the native tasks (logging task, keyboard task, image-
capturing task, file-system task) while loading and launching those
tasks.

In this way, the changes applied to the native firmware are only temporary
and remain minimal. Unfortunately, the position of the hooks is different
for every firmware version, so a different CHDK version is required for each
firmware version. The main task of migrating the CHDK code to a new
camera is to find out the correct position of the required hooks (section A.4).

2.3.3 What the CHDK can do for you

 RAW images
One of the most outstanding functions of the CHDK (and historically the
first) is the ability to deliver and process RAW sensor data. The popularity of
RAW image processing relies on the fact that RAW files contain the full in-
formation gathered by the sensor. The JPEG format, in contrast, resamples
the 10-, 12-, or 14-bit pixel values down to an 8-bit scheme. This can result
in washed-out highlights. PC-based RAW converters, on the other hand, are
able to recover at least some of the blown-out highlights.

An additional problem with the JPEG format is interpolation. Sensor
cells responsive for red, green, and blue light are placed side by side. There-
fore, interpolation is required to compute a complete pixel value as re-
quired by the JPEG format. PC-based RAW converters (section 4.5.4) can do
a better job than the tiny processor within the camera, resulting in im-
proved sharpness and fewer artifacts such as moirés.

Another advantage of the RAW format is that processing decisions, such
as white point and color space (e.g., sRGB, AdobeRGB), can be postponed
until the image is in the development phase on the PC. There, the photo-
grapher can try out different settings without risking loss of image detail.

Figure 2-2

The CHDK main menu organizes the

numerous functions into 11 groups.

The menu is obtained by changing into

 <Alt> mode (chapter 4), then pressing

the MENU button.

8 CHAPTER 2 Cameras and Operating Systems

Recent versions of the CHDK are able to deliver RAW data in the popular
DNG format, created by Adobe as a camera-manufacturer-independent
RAW format. It’s a sensible choice; manufacturers of premium cameras
such as Hasselblad, Leica, and Pentax have chosen it as their native RAW
output format.

 Scripting and motion detection
An outstanding feature of the CHDK is its ability to automate tasks by writ-
ing a script. While older versions of the CHDK support only the easy but
rather simplistic scripting language uBasic, newer versions come with
built-in support for the more advanced Lua language, which is also used by
Adobe Lightroom for automation purposes. With scripting, it becomes pos-
sible to shoot long time series or to let the camera operate autonomously,
as in unmanned aerial missions.

A rather surprising feature of both uBasic and Lua is the possibility of
motion detection. Under the control of a script, the camera shoots when
motion occurs within the image field, or if a detected motion stops. The
CHDK uses the camera sensor for this purpose, allowing highly configu-
rable motion detection without the need for extra hardware.

More control
Most Canon compact cameras operate automatically. If they offer a manual
mode, it enables you to dial in correction values for exposure but does not
allow you to set explicit values for shutter speed, aperture, or ISO speed, or
to focus manually. The CHDK, in contrast, enables you to do exactly that. Not
only is it possible to dial in precise values for shutter speed, aperture, ISO
speed, or focus distance, but the range of available shutter speeds is signifi-
cantly expanded. Extremely short shutter speeds, such as 1/60,000 sec., and
extremely long exposure times are possible under the control of the CHDK,
depending on the physical limits of the camera. For video clips, it becomes
possible to influence the video quality, and on some cameras, to enable the
 optical zoom while shooting video.

Better information
While these possibilities extend the application range of the camera, the
additional OSD (On Screen Display) provides greater control over the gen-
eral image-making process. This starts with a battery meter that gives you
a precise readout (in percent) of the remaining battery power. This feature
alone makes it worth installing the CHDK, because shooting sessions and
battery usage can be planned in a much better way. Precise exposure con-
trol is achieved through a highly configurable live histogram and the

2.3 The CHDK: What it is and how it works 9

 display of zebra areas (over- and underexposed image areas masked with a
zebra pattern) that allow you to judge exposure before shooting. These in-
formation items can be arranged freely on the screen with the help of the
built-in OSD editor.

The Edge Overlay feature is also very useful. When switched on, the
contours of a shot are extracted and appear as an overlay on the display.
This allows you to align the following shots to the overlay, and thus to the
previous shot. This is particularly useful when shooting panoramas, for
 bracketing work such as HDR photography or focus stacking, or for shoot-
ing 3D stereo images with a single camera. Unfortunately, this feature does
not work in video mode where it could be useful for connecting different
takes.

 Remote control
While Canon EOS cameras allow full remote control, there are no provi-
sions of that kind for most compact cameras. Again, the CHDK adds that
feature to supported compact cameras and enables remote control
through the camera’s USB port—including shutter release, zooming, and
the possibility of remote functionality in scripts.

Utilities and games
Finally, the CHDK comes with a number of useful utilities such as a file
browser, which allows you to browse the memory card’s file system and to
delete files and folders. There is also a calendar and a text file reader (for
example, to read script documentation), and finally, a number of games in
case you get bored.

Figure 2-3

An incentive to always take your

camera with you: games in the

camera’s display (here, Reversi). A

 battery indicator keeps you informed

about the remaining power for

shooting.

10 CHAPTER 2 Cameras and Operating Systems

3.1 Requirements 11

3 Installing the CHDK

3.1 Requirements

Installing the CHDK requires you to prepare the camera’s SD card and in-
stall the CHDK onto that card. To do so, you need:

 f An SD card with no more than 4 GB. Larger cards can be used with the
CHDK on some cameras, but some features such as AUTORUN will not
work. Therefore, it is better to stick with cards that have no more than
4 GB of memory1.

 f A suitable card reader. Modern notebooks are usually equipped with
such a card reader. Alternatively, an external device can be connected to
the USB port. They don’t cost an arm and a leg.

 f Some knowledge of navigating file systems and downloading and in-
stalling software.

3.2 Does a CHDK exist for my camera?

Each camera model requires its own build of the CHDK. To be more precise,
each firmware version of the camera’s operating system requires its own
CHDK build. So, once you have established that your camera model is sup-
ported by the CHDK2, you have to find out the firmware version of your
camera.

Normally, your camera does not show this information. It must be en-
abled to do so, and this is done by placing a small file named ver.req (for
version request) into the root directory of the memory card. On Windows
systems, this is easily done by inserting the card into a card reader, down-
loading the program CardTricks (http://chdk.wikia.com/wiki/CardTricks),
and formatting the card as FAT (provided that you use a card with no more
than 4 GB of memory). If you have important content on the card, make
sure to copy it to other media first!

1 A discussion about using memory cards with more than 4 GB is found in
the appendix.

2 The supported camera models are listed at http://chdk.wikia.com/wiki/
CHDK.

12 CHAPTER 3 Installing the CHDK

CardTricks will create the file ver.req during that process. Now you may
insert the card into the camera. Then:

1. Switch the camera off.
2. Switch the camera to Playback Mode.
3. Switch the camera on again.
4. Press FUNC/SET. While keeping FUNC/SET pressed, press DISP. Now you

should be able to read the firmware version number from the screen. It
should be something like Firmware Ver GM1.01B. If you get the clock
instead, you were not quick enough in pressing the DISP button.

If this does not work, try to rename the file to vers.req. Some newer cam-
eras work with this file name.

3.3 Downloading the CHDK

Now go back to the CardTricks utility and press the Download CHDK button.
This will launch your web browser and open the URL http://mighty-hoern-
sche.de/. Find your camera and the firmware version, and click on the link
to start the download.

The website actually lists two downloadables for each camera and each
firmware version—a complete bundle with CHDK, example scripts, fonts,
and other goodies; and a smaller version with just the core CHDK. Don’t
hesitate to download the larger version—the difference of 200 KB is hardly
noticeable even on the tiny 256 MB cards supplied with your camera.

Before the downloaded software can be transferred to your camera, you
should make your memory card bootable. Just reinsert the card into the
 card reader and press the Make Bootable button in CardTricks.

Figure 3-1

The CardTricks control screen. New

cards usually come formatted in the

 FAT32 file system. They must be

reformatted in the FAT file system.

With large cards, the button Format as

 FAT will automatically change to

Format as FAT32.

Figure 3-2

This is how the camera display should

look after pressing FUNC/SET and DISP.

By keeping FUNC/SET pressed and

pressing DISP more than once, you can

scroll down the screen to show

additional information.

3.4 Manual installation 13

Now you may transfer the CHDK to your card. Press the button
CHDK > Card and select the downloaded file. CardTricks will simply unzip
this file into the card.

Remove the card from the card reader. Set the write protection by mov-
ing the little slider away from the contacts. This will enable the AUTORUN
feature. Don’t be afraid, the camera will still be able to write pictures to the
card. The CHDK will see to that.

Finished. Keep your fingers crossed and insert the card into your camera.
Switch the camera on. Shortly after the Canon splash screen, the CHDK
splash screen will appear. If this is the case, you have successfully installed
the CHDK on your Canon camera.

3.4 Manual installation

CardTricks is a Windows-based program. If you work with a Mac3 or with
Linux, you will not be able to use it (though it might be possible through an
emulator). But there is another method to get the CHDK up and running:

1. First, format the card with the FAT16 file system. This must be done
with a card reader and a computer—the camera would format your
card with FAT32. (On the Macintosh, invoke the terminal program and
enter “df” to start the harddisk manager. Then enter a formatting com-
mand such as “newfs_msdos -F16 /dev/cardname” where “cardname”
is the volume name of your card.)

2. Then, make an educated guess at your firmware version. Download the
corresponding CHDK binaries and unpack them to your card. Again, you
need a card reader to do so.

3 A script for easy installation on the Mac is found on http://chdk.wikia.com/
wiki/FAQ/Mac.

Figure 3-3

4 GB SD card with the slider in

write-protection position.

14 CHAPTER 3 Installing the CHDK

3. The distribution contains a file ver.req or vers.req. This allows you to
determine the real firmware version as described in section 3.2. If it
does not match your guess, download the correct version and unpack it
into your card.

4. Now you are ready to boot manually. Leave the camera in Playback
Mode and insert the card. Press MENU and navigate down to the last
item (Firm update…). Press FUNC/SET, select the OK button, and confirm
again with FUNC/SET. The CHDK is loaded and will soon show the
CHDK splash screen. It stays loaded until the camera is switched off.
Actually, no firmware upgrade was performed! The Firm update… func-
tion was just hitchhiked by the CHDK.

5. To enable the AUTORUN function, you must make your card bootable.
That can be done with the CHDK, too. Press the ALT key (chapter 4) fol-
lowed by the MENU key to invoke the CHDK menu. Navigate to Miscel-
laneous stuff > Make Card Bootable… and press FUNC/SET.

6. Switch the camera off, remove the card, and lock the card to enable
AUTORUN mode. Insert the card again and switch the camera on. CHDK
will now boot automatically each time the camera is switched on—
until you disengage the write protection lock.

Once you have installed the CHDK on your card, you should, as a matter of

fact, avoid formatting your card to get rid of images. Formatting would also

delete the CHDK and require a complete reinstallation. Instead, you have two

options for deleting obsolete pictures:

 f Use the camera’s original delete functions to delete images. Switch the

camera to Playback Mode, press MENU, and select Erase… Then you can

delete by selection, by folder, or all images. There is a hitch: the camera will

only show JPEG images or folders containing JPEG images. RAW and DNG

images obtained through the CHDK (section 4.5) are not shown and not

deleted.

 f Use the file browser provided by the CHDK (section 4.10.1). Press ALT

(chapter 4) followed by MENU. Then select Miscellaneous Stuff > File

Browser and navigate to the folder that you want to delete. Press DISP and

answer the prompt with Yes.

3.5 The warranty question

The big question for many camera owners is: what about the manufac-
turer’s warranty when I install the CHDK in the camera? We don’t think
that there should be a problem. The CHDK is installed on the memory card.

Figure 3-4

The Firm Update ... function of the

camera can be used to load and

activate the CHDK.

Figure 3-5

The CHDK submenu Miscellaneous.

The entry Make Card Bootable…

does exactly what it says.

3.5 The warranty question 15

The camera is obviously designed to load and execute software found on
the card—the situation is similar to fitting a third-party lens to a DSLR.

The CHDK alters neither the camera nor the camera’s firmware in any
way. Reformat the card (or use a fresh card), and the CHDK is gone. The
camera continues to run under its original firmware. In fact, before sending
in the camera for warranty, you should remove any memory cards from the
camera. A camera equipped with a CHDK-enabled card may disturb service
technicians and make their job difficult. In addition, the card may also
contain images that you don’t want to share with others.

16 CHAPTER 3

4.1 Using menus 17

4 Teach Your Camera New Tricks

We have already mentioned the ALT key. Use it to switch the camera into
 <ALT> mode (or CHDK mode) where all CHDK menus and scripts are acces-
sible. Note that while in <ALT> mode, none of the keys (including the shut-
ter release) work in the traditional way. To return to normal operation, you
must leave <ALT> mode. This is done with another click on the ALT key.
<ALT> mode is indicated by a small <ALT> sign at the bottom of the display
(blue in Recording Mode and white in Playback Mode).

Now, where is this mysterious key? There is no key on your camera la-
beled ALT. In fact, the actual key acting as the ALT key varies from camera to
camera:

 f A series and SD series: the Print button is used. A short press (like a click)
is sufficient; a long press will either have no effect or invoke a native
camera function.

 f G series and S series: the Shortcut button is used by default. Actually,
the ALT function can be assigned to the Shortcut, Flash, Timer, ISO, or
 Video buttons.

4.1 Using menus

Invoking the CHDK menu is almost as simple as invoking the native menu.
Switch to the <ALT> mode by pressing the ALT button, and then press the
MENU button. You can exit the menu by pressing the MENU button again
or by pressing the ALT button, which will also leave <ALT> mode and return
to normal mode.

Some menus are too large to be displayed on the screen. In this case, the
menu shows a scroll bar at the right-hand side. Use the UP and DOWN
buttons to scroll to the desired position.

Menu items are either parameters or submenus. A right arrow identi-
fies submenus. To open a submenu, press the FUNC/SET button. To return
from a submenu to the higher menu level, navigate to the last item on the
screen which should be named Back. Press FUNC/SET on that item. Alter-
natively, you can press the DISP button to return to the parent menu.

Pressing the LEFT, RIGHT, or FUNC/SET buttons changes values in the
other menu entries. The change immediately becomes active—an extra

Figure 4-1

The Extra Photo Operations submenu.

The scroll bar on the right-hand side

indicates that the menu is scrolled

down to the bottom. The last entry, the

Back entry, leads back to the main

menu. This submenu has two child

submenus: Bracketing in Continuous

Mode and Custom Auto ISO.

18 CHAPTER 4 Teach Your Camera New Tricks

confirmation is not required. Simply leave the menu by pressing the MENU
or ALT button when you are finished.

Some entries have a large value range and dialing in the desired value
with the LEFT or RIGHT button would be very tedious indeed. Therefore, the
CHDK programmers have equipped such entries with a child entry named
Value Factor that usually has the values Off, 1, 10, 100, etc. The value se-
lected here is multiplied by the value of the parent entry. For example, if
you dialed in a value of 40 for the entry Override ISO Value (Figure 4-1) and
selected a value of 10 in the child entry Value Factor, you would be specify-
ing an ISO speed of 40*10 = 400. Selecting the value Off in the Value Factor
disables the parent entry. In this example, selecting Off for Value Factor
would switch off the manual override of the ISO speed and return to the
camera’s native ISO speed control system.

4.2 Customizing the user interface

The CHDK has many functions to customize the user interface. Most of
these functions are found in the submenu Visual Settings. Here you can
change the language of the CHDK menus. (The language of the native
camera menus is changed separately. Consult your camera’s user manual
to do so.) You can change the OSD Codepage to allow for different national
characters. You can also select between plain, bold, serif, and sans serif
fonts in different sizes, and switch between differently sized symbols (10 or
16 pixels).

4.2.1 OSD Codepage

By default, the CHDK is set up with the OSD Codepage Win1251 that sup-
ports the Cyrillic alphabet (the CHDK was originally created by a Russian
programmer).

For English, Spanish, or other Western languages, switch the codepage
to Win1252. Invoke ALT > MENU > Visual Setting > OSD Codepage… and press
FUNC/SET to select Win1252 (Figure 4-2).

4.2.2 Fonts

By default, the CHDK uses the smallest font available for its menus, thus
maximizing the number of menu items displayed on one page. Depending
on your eyesight, you may want to select a larger font. For me, this has very
much increased the joy of using the CHDK. Invoke ALT > MENU > Visual

Figure 4-2

The Visual Settings submenu. The first

entries are dedicated to language, code

page, font, and symbols, while the rest

of the entries are used to specify the

text and background colors of the

different information items. Note that

the font settings apply to menus only,

not to OSD text.

4.2 Customizing the user interface 19

Setting > Menu RBF Font…, press FUNC/SET and select a font that suits you,
or press MENU to escape.

Note: Not every font supports all national characters. If the national
characters of the chosen language do not appear correctly, select a differ-
ent font. You may have to repeat this process a few times until you find a
satisfying solution.

Hint: To switch back to the default font, just select a non-font file.

4.2.3 Colors

The rest of the submenu Visual Settings is dedicated to colors. Both the text
color and the background color can be changed for different information
items. The default background color is a semi-transparent, neutral gray. To
change a color, press FUNC/SET on the color entry. This brings you into the
color chooser. Select a suitable color with the LEFT, RIGHT, UP, and DOWN
 buttons. Commit the selection with FUNC/SET or cancel with MENU. Both
transparent and opaque colors are available.

4.2.4 Organizing the screen

The amount of information the CHDK is able to show on the display is
amazing—almost any camera state can be displayed on the screen. There-
fore, it becomes mandatory to select the information carefully and to ar-
range its layout properly. Otherwise, you would be overwhelmed by an
information overload that would be disturbing in shooting situations in-
stead of being helpful. Most of these settings are found in the submenu
OSD.

Let’s discuss these settings one by one:

 f Show OSD. Here you can specify whether you want to show the CHDK
OSD information at all. Note that this setting does not affect the native
OSD information. It also does not affect the Edge Overlay, the Histo-
gram, or the Zebra function. Simply press FUNC/SET to switch the CHDK
OSD on or off.

 f The corresponding entry Hide in? specifies when to show the OSD infor-
mation if it is switched on. Select Don’t if you do not want to hide the
OSD at all, select In Playb if you want to hide the CHDK OSD during
playback mode, select On Disp if you want to hide the CHDK OSD to-
gether with the native OSD (which probably makes the most sense), or
select both if you want to hide it in both situations. Unfortunately, this
setting does not affect all CHDK OSD information items. The only way

Figure 4-3

The CHDK file browser is used to select

a font for displaying menu items.

Figure 4-4

The OSD submenu. This image was

compiled from two subsequent

screenshots.

20 CHAPTER 4 Teach Your Camera New Tricks

to get a completely clean screen is to switch off the CHDK OSD com-
pletely (see above).

 f Center Menu. Displays the CHDK menus in the center of the screen if
switched on. If switched off, the CHDK menus are aligned to the top of
the screen.

 f Auto select 1st entry @ menu. When switched on, the first item of a
freshly opened menu is selected automatically. If switched off, no item
will be selected.

 f Enable Symbols. Determines whether symbols should be shown at the
beginning of each menu item. I find the information value of these
symbols rather limited and I can read the menu easier without the
symbols.

 f For the User Menu entries, please see section 4.2.5.

 f Show State Displays. Determines whether the settings made in the
submenus Extra Photo Operations (section 4.3.1) and Custom Curves
(section 4.3.8) should be displayed on screen.

 f Show temperature. Determines if and when temperature should be dis-
played on screen (Off, Optical, CCD, Battery, All). This can be useful
when operating in a very hot or cold climate. (The optical temperature
is the temperature of the lens elements and is the closest one to the
environment temperature.) The temperature reading is in degrees
Celsius if the following menu entry in Fahrenheit is not switched on.

 f OSD Layout Editor. This entry allows you to modify the layout of the OSD
information items on the screen. For this purpose, the CHDK organizes
the information items into groups: histogram, DOF calculator, exposure
status display, remaining RAW images, miscellaneous values (focal
length and other values), battery symbol, memory card symbol, vertical
memory usage bar, horizontal memory usage bar, battery text, memory
usage text, clock, temperature, remaining video time, EV correction
factor photo, and EV display video. By pressing the FUNC/SET key repeat-
edly, you can select between these groups in the given sequence. The
selected group is shown with a green frame. To modify the position of
the selected group on the screen, simply press the LEFT, RIGHT, UP, and
DOWN buttons. You can leave the editor with the MENU button.

Figure 4-5

The OSD layout editor in action. The

status bar (top left) displays the

currently selected layout item

(Histogram), its x/y-position, and the

step width(s). The step width can be

changed between 1 and 10 via the

DISP button.

4.2 Customizing the user interface 21

 f Grid. See section 4.2.6 for this submenu.

 f Miscellaneous values. See section 4.2.7 for this submenu.

 f DOF Calculator. See section 4.2.8 for this submenu.

 f RAW. The RAW Showing submenu controls the display of information
related to shooting in RAW format. The entry Show RAW state controls
whether RAW-related information is shown at all. If yes, the subentry
Show RAW shoot remain controls whether the number of remaining
RAW images is shown. A warning is given if this number falls below the
value specified in the subentry Warning threshold.

 f Battery. The Battery Showing submenu controls the display of battery-
related information such as symbol, level (percent), and current voltage.
In addition, it allows you to set reference values for the maximum and
minimum voltage. When set up correctly, the level will move within the
full range from 0 to 100 percent. To use this function, first enable Show
 Battery Voltage. Now you can determine the voltage of a freshly loaded
battery and the voltage of the battery shortly before the camera powers
off due to battery exhaustion. When you have found out these values,
you may want to dial them in under Battery MAX Voltage and Battery
MIN Voltage.

 f Filespace. The Filespace showing submenu controls the display of mem-
ory space information. It determines whether to show a filespace icon
and a vertical or horizontal space bar. The length and thickness of the
bar can be controlled in the subentries Size on screen and Width/Height.
The free space in the memory card can be shown as a percentage of its
total capacity or as an absolute value in MB. Again, warnings can be
given if this free space falls below a defined threshold, which can be
specified in both percentage and MB.

 f Clock. The Clock submenu controls the display of the system clock. The
entry Show Clock can be switched to Don’t, Normal (hh:mm), and
Seconds (hh:mm:ss). The Clock format can be switched to 24h or 12h
format, and the 12h clock indicator can be switched between PM, P, and
a period. The entry @Shutter halfpress show controls if and how the
clock is displayed when the shutter button is half-pressed (Don’t, Full,
Seconds (only)).

 f Show OSD in Review Mode. This submenu controls whether OSD infor-
mation is shown in Review Mode. (Review Mode is activated when you
hold the shutter button down after a shot and press FUNC/SET.) On my
SD1100, however, this feature seemed to be broken; the OSD informa-
tion was always shown in this mode, independent of the settings.

Figure 4-6

The RAW showing submenu

Figure 4-7

The Battery showing submenu

Figure 4-8

The Filespace showing submenu

Figure 4-9

The Clock submenu

22 CHAPTER 4 Teach Your Camera New Tricks

4.2.5 User menus

The number of entries in the CHDK menu is quite overwhelming. Searching
the same items again and again and stepping through the submenus can
be quite tedious. The CHDK therefore offers the option to organize the
most important menu items (favorites) into a user-defined menu. This
menu is, by default, accessible through ALT > MENU > OSD Parameters > User
Menu. If you try this, you will find that the user menu only contains a single
item, Main Menu, that leads back to the main menu. This item is always the
first item in the user menu.

Now, how do you configure your own menu? It’s quite simple: first, you
switch the user menu into editing mode. Then you add menu items from
the main menu by selecting them:

1. Set the entry User Menu Enable to Edit.
2. Navigate to the menu item that you want to add to the user menu.
3. Half-press the shutter button to add this item to the user menu. On

some cameras the FUNC or ERASE button is used instead.
4. Repeat steps 2 and 3 for more entries.
5. To remove menu items from the user menu, navigate to the user menu,

then half-press the shutter button (resp. FUNC or ERASE) on the item to
be deleted.

6. In the menu OSD Parameters, set the entry User Menu Enable to On or
OnDirect. OnDirect will automatically launch the user menu when you
switch to the <ALT> mode, saving you a click on the MENU button. The
MENU button, however, can still be used to launch the main menu or to
leave all menus. Alternatively, you can set User Menu Enable to On and
enable the option User Menu as Root. This will immediately launch the
user menu when you press the MENU button in <ALT> mode. Another
click on MENU will close the user menu. With this option set, the main
menu can only be reached through the first entry in the user menu.

4.2.6 Grids

In the analog days, an exchangeable ground glass was mostly a feature of
professional cameras. Today, many professional and semi-professional
DSLRs still offer the option of exchanging the ground glass. Some of these
screens come with etched grids, which can be especially useful for architec-
tural work and micro- or macrophotography.

With digital compact cameras and their electronic viewfinders, grids
can be easily shown on the camera’s display. Most of these cameras come
with a few built-in grids. For example, my SD1100 offers the option of dis-
playing 3:2 guides and a 1/3-rule grid. The 3:2 guides allow for easier

Figure 4-10

Two items control the configuration of

the User Menu. Here, the user menu is

switched to editing mode.

Figure 4-11

A configured user menu. The first item

always leads to the main menu; all

other items are favorites. As a result,

you can change the most important

settings very quickly.

4.2 Customizing the user interface 23

judging of the outcome if you plan to print in 6" x 4" format, for instance.
The 1/3-rule grids are mostly used for positioning the horizon in landscape
photography; dividing the image by a ratio of 2:1 or 1:2 is more pleasing
than placing the horizon in the center.

The CHDK greatly extends the range of available grids. You can even
define your own grids in the form of a simple text file. Each grid is imple-
mented as a .grd file in the folder CHDK/GRIDS/. If you want to roll your
own, you will find the necessary instructions in the file README.TXT in the
same folder. Predefined grids are:

 f 3to2grid. Indicates the 3:2 crop ratio, e.g., for 6" x 4" prints.

 f 3to8grid. Organizes the image horizontally and vertically into 3:2:3 di-
visions. This is very close to the Golden Ratio. It can be used to compose
an image in a visually pleasing way by aligning the prominent struc-
tures with the grid lines.

 f golden1. Indicates the “Golden Point”. The most important subject in
the image should be placed where the two lines meet. Horizontal or
vertical reflections of this grid can be used, too, resulting in four “golden”
points.

 f golden2. Identical to golden1 but showing two “golden” points.

 f id. Based on the ISO/IEC 19794-5:2005 standard for administrative
identity photos (passports, identity cards, driving licenses, etc.). The
large red ellipse shows the maximum head size, the small green ellipse
the minimum head size. The gray area is where the eyes have to be.

 f rulecross (rulecr~1 on DryOS). A grid typically used in aerial photogra-
phy and micro/ macro photography.

 f rulers. Similar to rulecross, but without the crosshair pattern.

 f sports. A grid simulating a sports finder. The nested frames represent
the different cropping lines. The idea is that you shoot at the highest
resolution and later crop along the lines shown in the grid—resulting in
a telephoto shot with lower resolution. The main advantage over digital
 zoom is that the display shows the events outside the cropping area,
too. This gives you time to prepare for the shot and enables you to catch
the event in time.

 f stolen. A grid for the paranoid. When activated, the grid darkens the
screen showing only the words “STOLEN CAMERA!” The idea is that a
person unaware of the CHDK will not be able to use the camera. A new
 memory card, however, would cure it.

 f third_h. Organizes the image horizontally into equally sized divisions
(horizontal 1/3-rule).

 f third_v. Organizes the image vertically into equally sized divisions
(vertical 1/3-rule).

Figure 4-12

The rulecross grid

Figure 4-13

The Grid Lines submenu. Normally, grid

files define the colors for lines and

background. However, by enabling

Override Grid Colors you can override

these colors with your own color

selections.

24 CHAPTER 4 Teach Your Camera New Tricks

To load one of these grids, invoke the entry Load Grid from File… . This will
launch the file browser (section 4.10.1). Select the respective grid file using
the UP and DOWN buttons, and then press FUNC/SET to commit or MENU
to abort. The grid may be switched on or off with Show Grid Lines.

4.2.7 Miscellaneous Values

The Miscellaneous Values submenu combines settings for the display of
values related to focus, zoom, and exposure. The first entry, Show Misc
Values, determines when these values are shown: not at all (Don’t), always
(Always), or when the shutter button is half-pressed (Shoot). The entry
Show values in video can be set to show these values while the camera is in
video mode.

Now, let’s have a look at the various information items:

 f The Zoom Value can be shown as the zoom factor (x), as the true focal
length (FL), or as the 35mm equivalent focal length (EFL).

 f If you are using a lens converter, such as a telephoto converter or a
wide-angle converter, you can dial its factor into the entry Adapter Lens
Scale. For example, if you use a telephoto converter with a factor of
1.75, dial in the value 175. This setting will be used to display the focal
length or the zoom factor correctly, and also to compute the depth of
field correctly (section 4.2.8).

The remainder of the display options are exposure-related. The exposure
system of Canon cameras is engineered along the APEX system (Additive
System for Photographic Exposure). This system defines several exposure-
related entities and puts them in relation to each other:

 f Time value (Tv) represents the shutter speed.

 f Aperture value (Av) represents the lens aperture.

 f Exposure value (Ev) represents the joint effect of exposure time and
aperture.

 f Speed value (Sv) represents the sensitivity of the sensor (the ISO set-
ting).

 f Brightness value (Bv) represents the scene brightness.

Internally, all these values use a logarithmic scale. This makes it easy for the
camera to derive values from each other. The relationship is simple:

Av+Tv = Bv+Sv = Ev

When in auto mode, the camera determines the entities Av, Tv, and Sv from
the measured scene brightness (Bv). Depending on the program chosen

Figure 4-14

The Miscellaneous Values submenu.

This image was compiled from two

display screens.

4.2 Customizing the user interface 25

(Landscape, Sports, etc.), the camera will determine the optimal compro-
mise between those entities. In manual mode, most cameras allow you to
set a fixed ISO value (Sv), and some cameras even allow you to select a fixed
 shutter speed (Tv) or a fixed aperture (Av). In such cases, the camera can
easily derive the other values from the above formula.

Let’s now take at look at the remaining parameters in the Miscellaneous
group and their abbreviations when displayed:

Value Hg In Misc

“Real” aperture

The true aperture, not rounded for display purposes.

Av

“Real” ISO

The true sensor speed as used in the APEX formula.

I-R

“Market” ISO

The sensor speed as displayed by the native Canon firmware. This
value is rounded and approximately 1.6 times higher than the real
ISO value, probably for marketing purposes. Therefore, the nickname
Market ISO.

I-M

Set Exposure Ev

The effective Exposure Value computed from shutter speed and
aperture (Tv+Av).

Evs

Measured Ev

The Exposure Value computed from scene brightness and sensor
speed (Bv+Sv).

Evm

Set Bv

The Brightness Value computed from shutter speed, aperture, and
sensor speed (Tv+Av-Sv).

Bvs

Measured Bv

The measured scene brightness.

Bvm

Overexp. Value

Shows an overexposure value computed from the APEX values:
Av+Tv—(Bv+Sv). This is without flash illumination.

dE

Canon Overexp. Value

Shows an overexposure value computed by the native Canon
firmware. This is a rounded value.

dEc

Scene Luminance

Shows the scene brightness in Candelas per square meter.

B

The differences between set Ev and measured Ev, and between set Bv and
measured Bv, are usually small when the camera is in automatic mode.
However, if you use Overrides (section 4.3.1), the differences can be

26 CHAPTER 4 Teach Your Camera New Tricks

substantial and the Overexposure Value will be significant. When using
Overrides, you should definitely display at least the Overexposure Value.

The small differences in automatic mode are caused by the fact that
Canon software quantizes all values to 96 units per f-stop. This can lead to
small (and insignificant) rounding errors.

4.2.8 Customizing the DOF calculator

The Depth of Field (DOF) calculator is a useful tool built into the CHDK.
Based on the real aperture value and the focal length, it is able to compute
values such as near sharpness limit, far sharpness limit, hyperfocal dis-
tance, and depth of field.

The entry Show DOF Calculator allows switching off the DOF calculator
altogether (Don’t), displaying its values in a separate group (Separate, see
Figure 4-16, or displaying the values within the Miscellaneous Values group
(In Misc). Depending on these settings, the displayed values are repre-
sented differently:

Value Separate In Misc

Subj.Dist.

Subject distance as determined by the AF system
or as set manually.

S SD

Near Limit

The near limit of sharpness.

R1 NL

Far Limit

The far limit of sharpness.

R2 FL

Hyperfocal Dist.

The minimum distance that must be set to achieve
sharpness until infinity. The near limit is the hyper-
focal distance divided by 2.

Hyp Hyp

Depth of Field

The difference between the near and far limits.

DOF DOF

A bit disturbing is the fact that you can choose between different distance
values:

 f The option Canon Subj. Dist. as Near Limit uses the distance determined
natively by the camera as the near limit. Based on this value, the subject
distance and the far limit are both computed by the CHDK. My observa-
tion is that this option results in values that are too large.

Figure 4-15

The Miscellaneous Values display (right)

with all entries enabled. At the top is

the 35mm-equivalent focal length (Z).

Here the screen shows a 35mm-

equivalent of 38 mm – the true focal

length of the lens, however, is 6.2 mm.

The dE entry indicates that the

exposure is slightly incorrect. The

reason is that a manual shutter speed

of 1/100 sec was set via an Override

(top left).

Figure 4-16

The submenu DOF Calculator is used to

configure the DOF Calculator.

4.2 Customizing the user interface 27

 f If this option is not set, the distance determined natively by the camera
is used as the subject distance, and the near and far limits are com-
puted. The result seems only slightly too large.

 f The option Use EXIF Subj. Dist. (PC65) uses instead the distance written
into the EXIF data for those computations. This is the same value as in
 Property Case 65 (245 for DryOS, section 5.5.12). According to my obser-
vation, this value is too small.

Altogether, none of these three settings is precise. I get the best result with
both options switched off, but you must find for yourself the best setting
for your own camera.

4.2.9 Other user interface options

More useful options for customizing the user interface are found in
ALT > MENU > Miscellaneous Stuff:

 f Show splash screen on load. Can be used to hide the splash screen. At
times, this screen can be a nuisance, especially if you are in a hurry to
take a photo immediately after switching on the camera. If hidden, the
only visual indication of the CHDK booting is a short flash of the blue
LED.

 f Startup sound. A short beep can be used to indicate that the CHDK has
booted up.

 f Use zoom buttons for MF. This entry is only available on cameras with
manual focus. It allows a more precise setting of the manual focus by
using the zoom buttons.

 g A-Series: With manual focus enabled, the zoom rocker mimics the
left/right controls. You can adjust anything that is controlled by
the left and right directional controls via the zoom rocker—such as
manual focus, shutter speed, or aperture. Zooming is not possible
in this mode.

 g S-Series: While the MF button is held down, the zoom rocker will
control manual focus.

 f Disable LCD Off. Select No if you always want the display to turn off af-
ter the time specified in the Power Saving section of the native camera
settings. Select Script if you don’t want the display turned off while a
script is running. Select Alt if you don’t want the display turned off
while the camera is in <Alt> mode. This, of course, includes Script mode.

28 CHAPTER 4 Teach Your Camera New Tricks

4.3 Exposure

Most compact cameras come with automatic exposure only. Usually they
support a variety of automatic program modes such as portrait, landscape,
sports, kids&pets, night shot, sunset, snow, etc. However, the smaller and
lower-priced models usually do not feature aperture priority, exposure
time priority, or a fully manual mode. There are simply no provisions to dial
in an aperture value or a shutter speed. If they offer a manual mode, it only
allows dialing in an exposure correction value, and that’s it.

The CHDK has set out to remedy this situation. It allows overriding the
values determined by the camera’s exposure system with values dialed in
by the user. This is possible for aperture (or neutral density filter), exposure
time, sensor speed, and flash power. In addition, the CHDK offers a highly
customizable Auto ISO system and advanced features for exposure control,
such as a live histogram and zebra areas. We will discuss those features in
the following sections.

4.3.1 Overrides

As already mentioned, the CHDK allows overriding aperture, exposure
time, ISO speed, and flash power. This works in all camera modes, auto-
matic and manual. So, for example, if the camera is in automatic mode and
you override the exposure time only, the camera will automatically choose
the right aperture; the camera will be in Shutter priority (Tv) exposure
mode.

But not all cameras can do this. Cameras equipped with an ND filter
instead of a diaphragm cannot adjust the aperture and completely revert
to manual mode. In this case, you must adjust the ND filter state and the
ISO speed yourself to obtain a properly exposed image. The density of the
ND filter depends on the maximum aperture—the ND filter simulates a
setting of f/8 at the focal length at maximum aperture. So, if the maximum
aperture is f/2.8, the density of the ND filter will be three f-stops. With a
telephoto setting where the aperture is perhaps only f/4.9, the aperture
simulated by the ND filter would be around f/14. With the CHDK in place,
you can normally keep the ND filter out and use very short shutter speeds
when conditions become too bright. An ND filter makes sense if you need
rather long shutter speeds for compositional reasons (waterfalls, architec-
tural images, etc.).

So, with diaphragm-less cameras your options for exposure control are
somewhat limited. You can’t just open or close the aperture to compensate
for variations in shutter-speed. Instead, you must adapt the sensor speed.
For example, if the camera computes a shutter speed of 1/100 sec and you
override it with 1/1000 sec, you have to make up for the 3 1/3 stops less

4.3 Exposure 29

light caused by the shorter exposure time by increasing the sensor speed—
let’s say, from 50 to 500. Manually, this is not a problem. You just dial the
new ISO speed into the Overrides. Automatic operation with shutter prior-
ity, however, is only possible on cameras with ND filters when using a suit-
able script for exposure control (section 5.7.4).

Let’s return to cameras that do have diaphragms. On such a camera, if
you override the aperture only, the exposure system will select a suitable
exposure time; the camera will be in Aperture-priority (Av) exposure mode1.

All of the Overrides are combined in the submenu Extra Photo Opera-
tions. The first entry of that submenu is used to switch the camera between
native mode and override mode.

 f Disabled. The Override System is completely disabled.

 f Off. All Override Values are disabled, but the display shows the remark
NO OVERRIDES.

 f On. All Override Values are active. The display, too, shows the override
values if option OSD > Show state displays is enabled (section 4.2.4).

Because stepping through the menus can be a bit awkward, the CHDK of-
fers a key combination to toggle the Overrides between On and Off. This key
combination depends on the camera type:

 f Cameras without DEL key and SX100: Shutter halfpress + LEFT

 f G7: Shutter halfpress + UP

 f All other cameras: Shutter halfpress + DOWN

Optionally, the Overrides state (On or Off) can also be applied to the AutoISO
feature (section 4.3.2) and the Bracketing feature (section 4.6). This is con-
trolled through the entry Include AutoIso & Bracketing. If the option is set,
AutoISO and Bracketing will be enabled if Disable Overrides is off, and dis-
abled if Disable Overrides is on.

Individual entries can be switched on or off through their Value Factor
subentry. If not set to Off, this value factor is multiplied by the value of the
main entry. For the Shutter Speed entry, there is another, more convenient
possibility: when the entry Shutterspeed enum type is set to Ev Step, the
only possible value factor is 1 (and Off). The Shutter Speed Value will step
through all available shutter speeds by 1/3 f/stops (2048 sec, 1625 sec, ...,
1.3 sec, 1.0 sec, 0.8 sec, ..., 1/80000 sec, 1/100k sec) as we are used to
in mainstream photography.

Otherwise, if the entry Shutterspeed enum type is set to Factor, the fac-
tor is simply multiplied by the specified shutter speed value. This method is

1 Again, this is not possible on cameras without diaphragms—you simply
won’t be able to override an aperture value.

Figure 4-17

Overrides for exposure and other

settings are controlled through the

Extra Photo Operations submenu. An

Aperture value override is not shown

here because this camera has only an

ND filter and no diaphragm.

30 CHAPTER 4 Teach Your Camera New Tricks

better suited for scientific work. Of course, the real limits2 of this range are
defined by the camera hardware, but see sections 4.3.6 and 4.3.5 for very
long and very short exposure times!

The same applies for ISO and aperture settings. For example, dialing in
an ISO value of 6400 will have no effect if your camera only supports ISO
1600: the sensor speed, will be set to 1600. Remember, too, that in the case
of the ISO speed, the Override value is the “real” ISO value—not the
“market” value, which is approximately 1.6 times higher. So if you dial in an
ISO value of 1000, the Review Mode will show an ISO of 1600.

For most cameras, the CHDK allows higher ISO values than what the
native camera menu has to offer. On my SD1100, for example, the ISO scale
ends at ISO 1600. The CHDK, in contrast, allows me to shoot images with
ISO 6400 (dialed in as ISO 4000). Of course, you may rightfully ask, what
about the noise? Aren’t images shot at such high sensor speeds extremely
noisy? In most cases, this is true, and it’s probably the reason why manufac-
turers put an artificial upper limit on the ISO value. But there are situations
where such ISO values can be useful. One example is when you use the
averaging technique for hand-held night shots (section 4.5.6). In such a
situation, a sharp and noisy image is more useful than an unsharp image
with less noise. The noise can be remedied by averaging a dozen shots or so.

Even in the case of single shots, there are options. PC-based noise re-
duction programs such as NoiseNinja or NeatImage can do a better job
than the camera does, and there are also some RAW converters with re-
spectable noise suppression capabilities.

Two more entries need an explanation:

 f Clear override values @start. If this option is enabled, all values are reset
to their default when the camera is powered up. Otherwise, the Over-
rides remain in place even after the camera is switched off.

 f The option Enable Fast Ev switch turns the UP and DOWN buttons into
exposure correction buttons. This makes sense because you don’t have
to step through the Canon menus to set an exposure correction value.

2 For the real limits of your camera, please see http://chdk.wikia.com/wiki/
CameraFeatures.

Figure 4-18

Japanese teapot detail. Photographed

with a Canon Digital Elph SD1100 as a

DNG file. An ISO of 4000 was dialed in,

the camera’s reading was 6400, and

the EXIF data recorded 6121. Exposure

time was 1/20 sec (per Override), the

aperture f/2.8 at a focal length of

6.2 mm (~ 38 mm). The red color of the

teapot and the nearly monochromous

character of the image kept the noise

low because noise is dominant in the

blue channel. Developed with

CaptureOne Pro 5.0, which features

excellent noise reduction.

4.3 Exposure 31

Also, the available correction range is much larger than the two f-stops
provided by the camera’s native exposure correction. The step size can
be controlled in increments of 1/6 f-stop through the subentry Step size.

On cameras where the UP and DOWN buttons are used for chang-
ing the ISO setting and for the self timer, however, there is a problem.
With Enable Fast Ev set, these buttons will have two functions. Pressing
the UP button repeatedly will change the Ev and the ISO speed; the
DOWN button will change the Ev and the shooting mode.

The workaround is simply to wait a second after each click on UP or
DOWN. After that time, the native function will be aborted so that only
the Ev value is changed. To change the ISO value or the self-timer/series
mode, simply click faster and afterwards correct the Ev value with the
opposite button in delayed fashion. Or, temporarily switch off Enable
Fast Ev. This less-than-optimal situation will likely change in future
CHDK versions.

4.3.2 Custom Auto ISO

Apart from setting a fixed ISO value in manual mode, the native Canon
exposure system provides two automatic ISO modes. These modes try to
find a suitable compromise between sensor speed and exposure time
when shooting in low light. The mode ISO AUTO puts the emphasis on im-
age quality. It uses lower ISO values and longer exposure times and is
therefore suited to subject matter without much movement, such as land-
scapes or portraits. In contrast, ISO HI puts the emphasis on speed. It uses
higher ISO values (resulting in more noise) but shorter exposure times. It is
therefore better suited to subject matter with fast movements, such as
sports, children, animals, etc.

Of course, both of these automatic ISO modes are predefined by the
manufacturer. The photographer has no chance to customize how they
work. Since the camera does not know how steady your hand is or the
minimal shutter speeds required, it can only make worst-case assumptions
that may result in less-than-optimal ISO settings.

Enter the CHDK. The submenu Extra Photo Operations > Custom Auto
ISO provides you with all the necessary controls to optimize the behavior of
ISO AUTO and ISO HI.

Let’s discuss the submenu entries one by one:

 f Enable Custom Auto ISO is used to enable the parameters listed below.
When disabled, the camera goes back to the native ISO AUTO and ISO HI
mechanism.

 f Minimal Shutter Speed. Here you can set a minimal shutter speed. The
Auto setting can be used when your subject holds still, as in landscapes,
portraits, or stills. For moving subjects, this setting will choose a

Figure 4-19

The Custom Auto ISO submenu

32 CHAPTER 4 Teach Your Camera New Tricks

minimum shutter speed depending on the focal length and the factors
specified in the following entries. The numeric settings (1/8, …, 1/1000)
specify a fixed minimum shutter speed. The camera will try to use this
or a shorter speed. Typical values would be:
1/8 – 1/30 for slow movement
1/60 – 1/125 for general movement (kids, pets, etc.)
1/125 – 1/1000 for fast movement (sports, etc.)

 f User Factor (1/FL Factor). An old rule says that you should use the value
of 1/focal_length as your shutter speed to avoid camera shake. How-
ever, this rule was made for 35mm cameras. To adapt this rule to the
optics of a digital camera, you need to specify the lens factor. To find out
that factor, first switch the display of the focal length to EFL (35mm
equivalent). This is done in OSD > Miscellaneous Values > Zoom Value
(section 4.2.7). Now read the focal length (Z) from the display. Then
switch the same entry back to FL (true focal length). Again read the focal
length (Z) from the display. Divide the first value by the second. This is
the start value for the User Factor. For example: on my SD1100 with its
1/2.5 inch sensor, I get an EFL of 38 mm and an FL of 6.2 mm in wide-
angle setting. The resulting focal length factor is close to 6.1. Cameras
with a 1/1.7 inch sensor have a focal length factor of 4.6.

Now you can modify this value according to your ability to hold the
camera steady. If you think that you can hold the camera quite steady,
or if you are able to lean your body against some solid object, subtract
20 percent. If you are quite shaky, add 20 percent. When the camera is
mounted on a tripod, dial-in the smallest value possible (1).

When shooting in a vibrating environment such as an airplane, the
User Factor (which is limited to an upper bound of 8) may not be suit-
able. Depending on the strength of vibrations, the above shutter speed
formula must be modified to approximately 8/focal_length. Then the
User Factor must also be multiplied by 8—too large to dial in. So in-
stead, compute the minimal shutter speed from the EFL-reading (35mm
equivalent) with the help of this formula and set it as a fixed value in
Minimal Shutter Speed.

 f IS Factor (Tv* Factor). This factor takes the Image Stabilizer into account.
An average Image Stabilizer will give you an exposure time extension of
an approximate factor of 4 (2 f-stops) without risking shake, a poor
Image Stabilizer about a factor of 2 (1 f-stop), and an excellent Image
Stabilizer a factor of 8 (3 f-stops). Newer camera models usually have
more powerful image stabilizers than older models. You can look into
test reports (for example, on www.dpreview.com) to find out about the
effectiveness of your camera’s IS system. Or do some of your own mea-
surements. Hint: Switch the Image Stabilizer off in environments with
strong vibrations. It’s built to correct hand shake, not vibrations with
higher frequencies.

4.3 Exposure 33

 f The entries Max ISO HI and Max ISO AUTO are used to limit the maxi-
mum ISO chosen in the respective ISO mode, and thus to limit visible
 noise in the image. This value must not exceed the maximum ISO speed
physically possible for your camera3. The values dialed in here are mul-
tiplied by 10, so, for ISO 800, dial 80.

 f In Min ISO you should set the minimum ISO physically possible for your
camera. Again, the values dialed in here are multiplied by 10, so, for ISO
100, dial 10.

4.3.3 Histogram

Your camera probably does have a histogram, at least in Review Mode.
However, this histogram is only shown after an image has been taken.

The CHDK has a bit more to offer. One option is showing a Live Histo-
gram on the display. The histogram can be shown when the shutter button
is half-pressed (Shoot) or always. So, with a quick look at the histogram, you
can decide whether the image is correctly exposed or whether it is neces-
sary to adjust the exposure (see section 4.3.1 for the fast Ev buttons). In the
case of too much contrast, however, it would be better to shoot an HDR
 bracketing series (section 4.6.2).

There is a lot to configure:

 f Different histogram styles can be chosen in the entry Histogram Layout
(Figure 4-21):

RGB Displays the sum of the red, green, and blue pixel values.

Y Displays the luminance component.

RGB Y Displays RGB above luminance.

R G B Three histograms, one for each color.

RGB all Displays all five histogram types with RGB on top.

Y all Displays all five histogram types with luminance on top.

Blend Blends the three histograms of R G B into one.

Blend Y Same as Blend, but with the luminance histogram added below.

 f Histogram Mode allows you to choose between Linear and logarithmic
(Log) scaling of the histogram Y-axis. Logarithmic scaling can be useful
if the image contains a large amount of similar colors. With linear scal-
ing, this would result in very high peaks.

 f When enabled, Show Histogram Over/Under EXP displays red dots at
both ends of the histogram if over- or underexposed areas are detected,
as shown in some histograms in Figure 4-21.

3 For the real limits of your camera please see http://chdk.wikia.com/wiki/
CameraFeatures.

Figure 4-20

The CHDK histogram can be configured

through submenu Histogram.

34 CHAPTER 4 Teach Your Camera New Tricks

RGB Y

RGB Y

R_G_B

RGB all Y all

Blend

Blend Y

Figure 4-21

The different histogram styles

4.3 Exposure 35

 f Ignore Boundary Peaks allows clipping a specified number of pixels (0–
32) at the left and right side of the histogram. Typically, this situation
arises when the subject matter is small and placed on a monotonous
background, as in night shots. A large black area would result in a high
peak at the left side of the histogram, and the remaining information
would vanish because of scaling. Removing these peaks makes the his-
togram readable again.

 f Another way to deal with peaks is provided by Auto Magnify. If enabled
and the histogram is filled to less than 20 percent, the Y-axis is enlarged
and peaks are clipped. The clipped peaks are marked with a red dot, and
the amount of magnification is displayed above the histogram.

 f Show Histo Ev Grid adds four or five vertical grid lines to the histogram
that indicate Ev values. The lines have a distance of one Ev (one f-stop).

4.3.4 Zebra

Another convenient way to control exposure is the Zebra feature. While the
histogram informs you about the tonal range of the complete image, the
Zebra feature identifies image areas that are under- or overexposed. These
areas are displayed with a pattern overlaid on the image to make them
stand out visually.

When enabled in the CHDK menu, Zebra areas are displayed by half-
pressing the shutter. The feature also works in Replay Mode when half-
pressing the shutter, allowing you to assess the image quality after the
shot has been taken.

Again, there are various options to configure:

 f Draw Zebra enables or disables the feature.

 f Zebra Mode determines how the overexposed or underexposed areas
are overlaid:

Blink 1 Solid overlay, blinks twice every second.

Blink 2 Solid overlay, blinks every second. This is my favorite. When there is
something blinking on the screen, I take a closer look to see what’s
wrong, but the blinking is not so fast as to make me nervous.

Blink 3 Solid overlay, blinks every two seconds.

Solid Solid overlay, no blinking.

Zebra 1 Striped overlay, thin diagonal lines.

Zebra 2 Striped overlay, fat diagonal lines.

Figure 4-22

The Zebra submenu configures the

Zebra mode.

36 CHAPTER 4 Teach Your Camera New Tricks

 f The sensitivity of the Zebra feature can be controlled by UnderExposure
Threshold and OverExposure Threshold. The range goes from 0 (low sen-
sitivity) to 32 (high sensitivity).

 f The next two options only apply to the Zebra blink modes. When a
Zebra pattern is drawn, both the Canon indicators and the CHDK indica-
tors (for example, the DOF calculator) are erased by the pattern. To re-
store these information items during the blink pauses, set the options
Restore Original Screen (for the Canon items) and Restore OSD (for the
CHDK items).

 f The option Draw Over Zebra applies to all Zebra modes. When this option
is set to value OSD, all OSD information items will be drawn on top of
the Zebra pattern and thus remain visible. When set to Histo, only the
 histogram is drawn on top of the Zebra pattern. When set to Nothing,
the Zebra pattern will be drawn on top of all items. With a blinking Zebra
pattern, I would rather set this parameter to Nothing and enable the
previous two options (Restore original screen and Restore OSD). This way,
both the Zebra pattern and the indicators are completely visible.

 f Finally, there is a special Zebra mode that can be switched on by RGB
zebra. This mode displays overexposed areas in different colors depend-
ing on which color channel is overexposed. For example, if the blue
channel is overexposed, the Zebra pattern will be blue; if both the red
and green channels are overexposed, the Zebra pattern will be yellow
(red+green), and if all channels are overexposed, the Zebra pattern will
be black. The drawback of this mode is that it cannot show under-
exposed areas.

4.3.5 High-speed photography

One amazing feature of the CHDK is the provision for ultra-short shutter
speeds. Before we go into the details, let’s take a look at general shutter
technology.

Traditional cameras from the analog era use mainly two types of shut-
ters. One is the focal plane shutter, which is also used in DSLRs. Here, two
curtains move across the focal plane, and the light passes through a slit
between the two curtains. The width of the slit determines the exposure
time. By choosing a very narrow slit, a focal plane shutter can offer fast
shutter speeds down to 1/8000 sec. The downside of this technique is that
the slit needs time to travel across the focal plane. Fast-moving objects often
appear stretched or contracted depending on the direction of the object’s
movement in relation to the slit’s movement. Another problem with this
type of shutter is flash photography. The entire sensor area must be uncov-
ered by the curtains while the flash is emitting light in order to avoid uneven
illumination. So shutter speeds cannot be very high when flash is used.

4.3 Exposure 37

The other shutter type is the leaf shutter located in the camera lens.
Here, several leaves quickly open the lens and then return to their original
position. Because of this movement reversal, shutter speeds cannot be very
short. For cameras with interchangeable lenses, each lens must be
equipped with a shutter, and an auxiliary focal plane shutter is needed to
cover the light-sensitive area during a lens change.

Compact digital cameras use a simple leaf shutter that is not very fast.
Its main purpose is to shield the CCD sensor from light while the image is
read. The exact shutter speed is determined by the point of time when the
image data is read. So the CCD determines the shutter speed, not the me-
chanical shutter—and the CCD can be very fast, indeed. It also allows for
using the flash with all shutter speeds. Most Canon compact cameras use
CCD technology, though some newer models such as the SX1 use CMOS
sensors.

CMOS sensors work differently. They do not need a mechanical shutter
but work similarly to a focal plane shutter. Only a range of rows on the
sensor—comparable to the slit between the curtains of a focal plane shut-
ter—is light-sensitive at a given time. This range travels across the sensor
area just like the curtain slit travels across the focal plane. Therefore, CMOS
sensors tend to distort fast objects similarly to the traditional focal plane
shutter. They also need slower synchronization speeds when using flash.

The CHDK can take control of the electronic shutter and offer shutter
speeds down to 1/100,000 sec. That is more than the cameras can physi-
cally do, but in some cases real shutter speeds down to 1/40,000 sec. have
been reported. A list of findings for different camera models is available at
http://chdk.wikia.com/wiki/CameraFeatures. (Some of the top-range com-
pact cameras such as the G-series cannot benefit from the CHDK in this
respect because they use a mechanical shutter to control exposure time.)

When setting a fast Tv value in ALT > MENU > Extra Photo Operations > Over-
ride Shutter Speed, the aperture (if the camera has a diaphragm) and/or the
ISO value must be adapted to achieve a correct exposure. Cameras with a

Figure 4-23

The blade of a power hand blender

rotating at 15,000 rpm. The camera

was a Canon Digital Elph SD1100 IS.

In the CHDK Overrides, the shutter

speed was set to 1/40,000 sec. and the

ISO value to 1000. Flash was used for

illumination. By measuring the extent

of the small motion streaks on the

blade, we could determine a shutter

speed of 1/25,000 sec. The EXIF data,

however, show a shutter speed of

1/1500 sec—the official maximum

shutter speed.

38 CHAPTER 4 Teach Your Camera New Tricks

diaphragm usually offer a shutter priority automatic mode (also called Tv
mode). On cameras without a Tv mode, you must set aperture and/or ISO
manually, or use the script presented in section 5.7.4 (see also section
4.3.1).

4.3.6 Night photography

In the past, night photography has not been easy with digital cameras. At
high ISO values, the noise in the image goes up. Shooting at low ISO values
is not always possible—lack of a tripod may be just one reason. And at long
exposure times, the camera’s sensor tends to produce artifacts: hot pixels
that show up as tiny bright dots. Hot pixels are the main reason why man-
ufacturers limit the maximum exposure time.

However, inventive photographers have found a way around this limita-
tion. The basic idea is: shoot at a higher ISO speed, but don’t just take a
single shot of your subject. Instead, shoot a whole series of images, each
exposed in the same way. Afterwards, these images can be overlaid and
averaged. This will cancel out some of the noise (see below), and the image
will appear as if shot at a lower ISO speed. It is even possible to shoot such
a series hand-held. PC-based programs like PhotoAcute can automatically
register the images with each other and construct an almost noise-free
composite image.

But what if you want to visualize motion (cars on the highway, star
tracks, etc.)? In these cases you need long to very long exposure times.
Without the CHDK, you are lost. But with the CHDK, your options for night
photography are extended in several ways:

 f Shooting RAW. RAW images can be treated with powerful PC-based
noise reduction programs that outperform the in-camera noise reduc-
tion applied to JPEG files. These programs usually perform better with
RAW sensor data. Your best option is the DNG format: here, bad pixels
(as predetermined by the manufacturer) can be subtracted from the
image (section 4.5.2). In addition, RAW images can capture the high
contrast typical of night exposures better than JPEG images.

 f Higher ISO values (section 4.3.1). This results in more noise, of course;
but you can take several hand-held shots and average them later. Figure
4-24 shows that it becomes possible to obtain low-grain images of
night scenes even without a tripod when using this technique.

 f Merging several RAW images (section 4.5.6). This can be an option when
you take a series of photos with your camera mounted on a tripod. This
feature cannot register the images with each other, but it saves post-
processing on the PC.

4.3 Exposure 39

 f Longer exposure times (section 4.3.1). How long depends on the camera
model4, but the minimum is 64 seconds. Many cameras allow for up to
2147 seconds.

 f Dark Frame Subtraction (DFS) (section 4.5.2). DFS can be useful when
you’re shooting with long exposure times at low ISO speeds. In such
conditions, it will effectively remove all hot pixels. When used with high
ISO values, however, it can make things worse (see below). The CHDK
allows you to switch DFS on or off, or to use the Auto setting when DFS
will only be used for exposure times less than or equal to 1.3 seconds.

ABOUT NOISE

Each image contains noise—dominantly sensor noise (mostly in the blue

channel) and amplifier noise. Small sensors cannot catch as much light as

large sensors and thus require more amplification, resulting in a lower signal-

to-noise ratio. The higher the amplification (and the ISO speed), the higher

the noise.

Noise is a random phenomenon. Therefore, subtracting two independent

noise sources from each other does not cancel out the noise. In this case,

subtraction actually has the same effect as adding both noise signals. This is

the reason why Dark Frame Subtraction does not cancel out stochastic noise

but rather increases it. Where DFS helps is with Hot Pixels because they are

not random.

Noise is reduced when averaging several images. Again, the reason is the

stochastic character of noise. Adding the signals from n images results in an

image signal of n-times the strength, but the strength of the noise signal

multiplies only by the square-root of n. So, the image-to-noise ratio improves

by the square-root of n. For example, when shooting a series of 16 shots and

averaging them, you end up with an image where the signal-to-noise ratio is

improved by a factor of √16 = 4.

4 See http://chdk.wikia.com/wiki/CameraFeatures.

40 CHAPTER 4 Teach Your Camera New Tricks

4.3.7 Flash

Most Canon compact cameras have rather limited flash functionality. My
SD1100, for example, supports the following modes: Automatic, Off, and
On (in manual mode). Red-eye correction and a red-eye lamp can be
switched on, and in manual mode there is a Slow Sync option. However,
there is no way to control the flash power. This is unfortunate; it’s hard to
use the flash as a fill light.

Once again, the CHDK comes to the rescue with an override. There is an
option to enforce manual flash even when the camera is in automatic
mode, and the flash power can be controlled in three steps: weak (0),
medium (1), and strong (2). When using the flash as a fill light, the medium
and weak settings can be especially useful. I certainly would like a more
fine-grained flash control with the option of controlling the flash power in
1/3 f-stops; but, you can’t have everything. The three flash power settings
of the CHDK are better than nothing. The strong setting comes in handy

Figure 4-24

This detail of a night shot shows

massive graininess in the top image.

This was caused by setting the sensor

speed to ISO 6400 (market) on a Canon

Digital Elph 1100 IS (Ixus 80 IS).

Exposure time was 1/20 sec, aperture

f/2.8 at 6.2 mm (equiv. 38 mm). The

image was shot hand-held as a DNG

image with Bad Pixel Removal. The

image at the bottom, in contrast, was

composed of the image shown at the

top and seven more similar images, all

shot hand-held. Registration and

averaging was performed with

PhotoAcute Studio. No other noise

reduction techniques were applied,

so there is still room for further

improvement.

Figure 4-25

The commands for controlling the

manual flash are reached through the

menu Extra Photo Operations. You’ll

find them at the end of the menu.

4.3 Exposure 41

when you need lots of light: for example, when you want to shoot with an
ultrashort exposure time (section 4.3.5).

By the way, if you enforce the manual flash but it doesn’t work, don’t
blame the CHDK; you might just need to charge the battery.

4.3.8 Using curves

 Custom Curves are another option in the CHDK to control the outcome of a
shot. Curves are applied after an image has been taken; they don’t influ-
ence exposure settings such as aperture or sensor speed. They simply
modify the digital data delivered by the sensor before it’s packed into a
JPEG file.

This can make sense. The sensor delivers the image data with a finer
dynamic granularity than a JPEG file is able to capture. Each pixel consists
of 10 or more bits, allowing the capture of at least 1024 levels of bright-
ness. A JPEG file only transports 8 bits per pixel. Due to the logarithmic
scaling of pixel values in JPEG format, the JPEG file does a good job on
shadows but not so good a job on highlights. Therefore, burned-out high-
lights are a common problem when shooting in JPEG.

One solution is to shoot RAW (section 4.5). A RAW file delivers RAW
sensor data—the complete information without any loss. Using a RAW
converter, you can properly compress the tonal range of the image to avoid
drowned shadows and burned-out highlights.

Is there no solution for shooting JPEGs? In fact, the CHDK offers one.
Curves can be used to do all kinds of tone mapping, including contrast
compression. The result can be a JPEG with detail in both highlights and
shadows. Because curves are applied when mapping the RAW data onto
JPEG pixel values, they do not have any effect on RAW images. And because
the CHDK can shoot RAW and JPEG simultaneously, you can have both a
curve-modified JPEG and an untreated RAW file as a backup.

The Enable curve entry in the Custom curves submenu offers the follow-
ing options:

 f None. No curves are used for tone mapping.

 f Custom. The pixel values are mapped under the control of a custom
curve. Such custom curves can be created with the help of a curve editor
(see below). The curve definition file must be placed into the folder
CHDK/CURVES/. The curve can then be loaded under menu entry Load
curve profile… .

 f +1EV. A system-defined curve that increases shadow detail by one
f-stop. Unlike the EV correction discussed in section 4.3.1, this option
will not increase noise, open the aperture wider, or increase exposure
time. It will, however, reduce contrast.

Figure 4-26

The Custom curves submenu

42 CHAPTER 4 Teach Your Camera New Tricks

 f +2EV. Similar, but increases shadow detail by two f-stops.

 f Auto DR. This curve helps avoid burnt-out highlights in a controlled
manner. Before taking an image, adjust the EV value (section 4.3.1) so
that the highlights show good detail. Then take your shot. The lumi-
nance of the shadows will be raised by the curve while the highlights
are compressed. In difficult lighting situations, this curve can be use-
ful—but you should not expect wonders. Better results can be achieved
by shooting RAW (section 4.5) and by adapting the tonal values manu-
ally on the PC, or, of course, by shooting an exposure series for creating
an HDR image (section 4.6.2).

These three system curves are contained in file CHDK/syscurves.CVF. This
file is loaded automatically.

Custom curves can be created with a PC-based curve editor running
under Windows. It is available from the web page http://chdk.wikia.com/
wiki/Software and from the book CD. To install the editor, simply copy it
onto the desktop. To create a new curve, select a color channel or All in the
Edit group, then start setting and dragging points with the mouse. You can
save the curve by entering a name into the text field at the bottom, then
click Save Point. This will create a .CTC file that is a plain text point list. For
usage in your camera, you must compile the curve with Create Curve. This
will produce two files: a .CV file and a .CVF file. Copy these files into the
folder CHDK/CURVES/ on your memory card.

CV-curves are plain RGB curves. CVF-curves, in contrast, introduce a color
shift for emulating an application of the curve to the luminance channel of
the YUV color model. Usually, this gives a better visual result in areas with
strong brightness changes.

Figure 4-27

The curve editor in action. Here we

have created a typical S-curve that

compresses the tonal values in the

shadows and highlights and boosts

the midtones. The curve mimics the

response curve of photographic

emulsions.

4.3 Exposure 43

You may wonder why the curve editor supports two green curves (Green-1,
Green-2). The reason is that the camera’s sensor cells are divided into Red,
Green-1, Blue, and Green-2, resulting in two green channels. Four sensor
cells can be nicely arranged in a 2x2 pattern. Green was duplicated because
the human eye is especially responsive to green colors.

Figure 4-28

Application of the S-curve from

Figure 4-27 to an autumn scene.

The upper image was delivered as a

DNG file, the lower image as a JPEG

file. As you can see, the JPEG image

has more contrast in the midtones.

Figure 4-29

The photocells of the camera sensor

are not sensitive to color. The Bayer

filter—placed in front of the sensor—

assigns a specific color to each cell

(Red, Green-1, Blue, or Green-2). When

the RAW sensor data is developed by

software—either in-camera or on a

PC—the full color pixel values are

interpolated by fetching the missing

colors from the neighbor cells.

44 CHAPTER 4 Teach Your Camera New Tricks

Custom curves are, of course, not restricted to compression of the dy-
namic range. They can also be used for creative purposes. When you assign
different-shaped curves to different color channels, you may get interesting
color shifts. Curves with hills and valleys result in an effect known as the
Sabbatier effect.

When doing such work, you should shoot RAW in any case. The curves are
only applied to the JPEG output5. If you are not happy with the outcome,
you still have the original and unmodified image in the RAW file. And by
redeveloping the RAW file (section 4.5.5), you can try out another curve.

As a matter of fact, all of these modifications using curves would also
be possible in a post-processing stage—at least when you opt to shoot
RAW. Image editing programs such as Photoshop or Paintshop Pro allow for
such modifications of the tonal range. However, using curves in the camera
may help you to realize your visualization of the scene earlier and to redo a
shot when the outcome does not match your expectations.

5 They also affect the preview images embedded into DNG files because the
previews are derived from the JPEG image.

Figure 4-30

Typical curve for achieving a Sabbattier

effect. The different curves for the

single color channels will cause color

shifts in midtones and highlights.

4.4 Focus 45

4.4 Focus

The focal system of Canon compact cameras is dominantly based on an
autofocus system. Only some cameras in the higher price range allow
manual focusing. The autofocus system is augmented by special focus
modes such as Macro or Infinity, which can be set manually. Over the years,
the focus system has become more and more advanced. One of the more
recent improvements is face detection, allowing the camera to focus pre-
cisely on the faces in a scene.

Like any of the focus systems in other compact cameras, the Canon
AF system is also contrast-based. When focusing, the camera moves the
lens back and forth until it finds a position where the contrast in selected
image areas is maximized. This takes some time; the phase detection-
based focus systems in DSLR cameras are much faster.

In the area of focusing, the CHDK also adds functionality. An explicit
subject distance can be dialed in precisely to the millimeter. This overrides
the autofocus system as well as selected focus modes such as Macro or
Infinity. The value range is between 0 and 65535 mm, with 65535 repre-
senting infinity. The easiest way to dial in infinity is to start with zero and

Figure 4-31

Dream landscape obtained with the

curve shown in Figure 4-30. See the

tonal inversion in the central sky area.

Figure 4-32

The entry Override Subj. Dist. Value in

the submenu Extra Photo Operations

can be used for manual focusing. The

override can be switched off via the

subentry Value Factor. The labeling of

this subentry is somewhat misleading.

Unlike its equally named siblings,

this value factor does NOT define a

value factor by which the main

entry is multiplied. Instead, it defines a

step width for modifying the main

entry. So, the subject distance set here

is 770 mm (77 cm) and not 7700 mm

as you might expect.

46 CHAPTER 4 Teach Your Camera New Tricks

press the LEFT button once. When using focus overrides, cameras featuring
a manual focusing mode must be switched into that mode.

Like any other override, the subject distance setting can also be con-
trolled via a script that allows you to do amazing things, such as automated
 focus stacking. We will discuss these techniques in section 5.7.2.

4.5 Shooting RAW

The RAW image format has so many advantages for the semi-professional
photographer that all cameras should offer it. However, this is not the case.
In particular, many compact cameras do not offer this option. To be able to
produce RAW images with consumer cameras was the main rationale be-
hind the development of the CHDK.

4.5.1 Basics

RAW images are nothing more than the unmodified sensor data produced
by the camera. JPEG images, in contrast, are the result of a development
process: the color temperature is estimated and applied, the image is
sharpened, noise is removed, and the contrast is compressed. Scenes with
stark contrast usually have some highlights clipped. So, the camera has al-
ready made some decisions for you.

A RAW image, on the other hand, allows postponing these decisions to
a later time. You don’t have to decide on processing parameters before
taking a picture. Instead, you can make these decisions at the post-process-
ing stage when the RAW image is developed on a PC (or even in the cam-
era). It is possible to play around and try different options in regard to
 exposure, white balance, sharpening, and noise suppression.

Another big advantage of the RAW format is that you can decide which
color space to use for the image during the development process. When
shooting JPEG, the camera makes this selection for you—and most com-
pact cameras won’t allow anything but the small sRGB color space. The
RAW format does not cast the RAW sensor data into any preset color space.
This decision is made later when the images are developed in a RAW con-
verter on a PC. Most PC-based RAW converters allow you to use the wider
 AdobeRGB color space. Some even allow for a larger variety of color spaces,
such as ProPhotoRGB or eciRGBv2.

Figure 4-33

The RAW menu adds functionality for

outputting RAW files. The first menu

item, Save RAW, allows you to toggle

quickly between RAW and non-RAW

shooting.

4.5 Shooting RAW 47

sRGB VS. AdobeRGB

The sRGB (standard RGB) color space was defined by Microsoft and Hewlett-

Packard. It is used by basically all consumer devices such as monitors, printers,

scanners, and LCD projectors. It is also used as the standard color space in the

Windows operating system. Because this color space is fairly narrow, the de-

vices can be simple and cheap. The downside is that the sRGB color space does

not cover some colors used in the printing process—so prints are not as color-

ful as they could be.

The AdobeRGB color space, in contrast, was designed by Adobe to meet

the demands of the printing press. It is larger than the sRGB color space.

However, the problem with this color space is that AdobeRGB images cannot

be properly viewed on standard monitors. A Wide Gamut Monitor is required

to view the full color range.

So, if your intention is to produce images for the web, by all means go for

sRGB because the majority of your audience will not be able to display the full

range of AdobeRGB. But if the printed image is your main concern, go for

AdobeRGB and consider a Wide Gamut Monitor for your next monitor.

Also, a PC-based RAW converter usually does a better job than the proces-
sor in the camera. This is particularly true for the small consumer cameras
for which the CHDK was developed. The small processors in those cameras
cannot run sophisticated interpolation algorithms in the short time after a
shot. In addition, when converting RAW files on the PC, the output of the

Figure 4-34

AdobeRGB covers the sRGB color space

as well as most of the CMYK color

space used for printing. Modern

camera sensors capture an even larger

color space.

48 CHAPTER 4 Teach Your Camera New Tricks

RAW processor can be a 16-bit lossless TIFF file instead of a lossy JPEG file
that is restricted to 8-bit color depth.

Of course, there are good reasons for shooting JPEG, too. Because JPEG
files are much smaller than RAW files, they can be stored faster on the
 memory card, resulting in faster operation when shooting a series—and, of
course, in higher capacity on your card. Also, you may not always want to
go through the time-consuming process of developing RAW files.

CHDK gives you the best of both worlds. When shooting RAW, the CHDK
also stores a JPEG version of the same image for preview. If you are happy
with the JPEG image, you can throw away the RAW file. If you think the
image requires some tweaking, keep the RAW file. CHDK even allows you
to exclude some situations from RAW shooting (ALT > MENU > RAW Param-
eters > Exceptions):

 f Disable RAW @ Burst. Burst mode is faster when not shooting RAW.
There is also an option in the main RAW menu (Figure 4-33) to shoot the
very first shot of a series as RAW but the following shots as JPEGs.

 f Disable RAW @ Timer. You may not want to shoot your self-portraits in
RAW mode.

 f Disable RAW @ EdgerOverlay. Edge Overlay is typically used with shoot-
ing stereo and panoramic images. As many panorama stitcher and ste-
reo programs don’t accept RAW files, JPEG is the preferred option here.

 f Disable RAW @ Auto Mode. You probably have your camera switched to
Auto Mode for casual shots. You would hardly need RAW images here.
For more serious shots where the RAW format makes sense, you would
switch your camera to Manual Mode because it gives you more control.

 f Warn when Exception? Optionally, a warning can be displayed when
one of the above situations applies.

4.5.2 DNG

The RAW format produced by the CHDK has some restrictions. First, CHDK’s
RAW images are not equipped with EXIF data. Second, the RAW format
produced by the CHDK is not understood by all RAW converters. Some
simply refuse to open the image. A good choice is the program RawThera-
pee, which is available for the main PC platforms (Windows, Linux, Mac) on
a donation basis. It’s a bit slow but delivers excellent results. Also, the free
command line tool dcraw converts CHDK RAW files with excellent quality.

Newer versions of the CHDK, however, can produce RAW images that
are already converted to the DNG format. Adobe Systems introduced DNG
in order to bring different RAW formats (each manufacturer has at least
one) under one umbrella. DNG files still contain RAW data but in a manu-
facturer-independent, Adobe-specific way. Some premium cameras such

Figure 4-35

The RAW Exceptions Menu. Not every

situation requires RAW output,

especially if you need faster camera

operation and more capacity for

images on your memory card.

4.5 Shooting RAW 49

as Hasselblad, Leica, and Pentax use DNG as their native RAW format. With
the CHDK, you can now join this exclusive club and produce DNG files di-
rectly from your camera.

Using DNG has a few advantages over the native RAW format:

 f You can choose among a large variety of image editors and RAW devel-
opers that accept DNG files as input.

 f DNG files produced by the CHDK do contain EXIF data.

 f Bad pixels are optionally corrected. There are three options in the menu
entry ALT > MENU > Raw Parameters > Bad pixel removal:

 g Off. No bad pixel removal.

 g Averag. Replaces the bad pixel with an average from its neighbors.

 g RAWconv. The repair job is left to the PC-based RAW converter. The
list of bad pixels is included in the DNG file.

Because bad pixels are optionally considered during the in-camera conver-
sion to DNG, a file badpixel.bin is required by the CHDK. Only then will
the DNG menu items work. So, before using DNG, you must execute the
script badpixel.lua. This script, which is included in the CHDK distribu-
tion, will read the list of bad pixels (as determined by the manufacturer)
from the camera’s firmware. To run the script, switch the camera to Record-
ing Mode and invoke:

1. Alt > FUNC/SET > Load Script from File… > TEST > BADPIXEL.LUA
2. Press the shutter button. The display will go dark, and the camera will

take two pictures. After 20–30 seconds, the display will reappear and
the camera will wait for input. If the bad pixel test was not successful,
the script will ask you to run the test again.

3. Press FUNC/SET to save the file.
4. Press ALT to switch back to normal mode.
5. Now you can go ahead and switch to DNG (ALT > MENU > RAW Parame-

ters > DNG Format). Or, you can use the built-in file browser to check
that the file BADPIXEL.BIN has been created in the folder CHDK/
(ALT > MENU > Miscellaneous Stuff > File Browser).

When working with DNG files, you should also enable the menu entry RAW
buffer cached. The built-in DNG converter will then read the RAW data
directly from memory and not from the card, resulting in faster operation.
However, if you frequently run into memory problems, disable this option.

50 CHAPTER 4 Teach Your Camera New Tricks

 DARK FRAME SUBTRACTION AND BAD PIXEL REMOVAL

Do not mistake Bad Pixel Removal for Dark Frame Subtraction. Both have their

pros and cons:

Dark Frame Subtraction is a common technique for removing unwanted

artifacts from an image. When an image is taken, the camera will make two

exposures: one with an open lens, the other with a darkened lens. The second

exposure will only show noise and hot pixels. Subtracting the second image

from the first will remove some of these artifacts. Dark frame subtraction is

usually used for long night exposures where the white, hot pixels can be very

disturbing. As a noise reduction technique, it is of limited value; subtracting

noise from noise results in even more noise because noise is a random phe-

nomenon. Therefore, this technique should only be used in combination with

rather low ISO settings. For better noise reduction strategies, see sections

4.3.6 and 4.5.5. With the CHDK, you have the option of switching Dark Frame

Subtraction on or off, or of using it only for exposure times longer than one

second (Auto).

Bad Pixel Removal works quite differently and only in connection with

DNG. A bad pixel map is created in advance. In section 4.5.2, we already dis-

cussed how such a map is created. When running, the script badpixel.lua

grabs a bad pixel map from the camera (normally used for the creation of

JPEG images) and stores it onto the card. The map itself is created when the

camera is manufactured and is part of the firmware. Therefore, and in con-

trast to Dark Frame Subtraction, Bad Pixel Removal catches not only hot pixels

but also dark, dead pixels.

Because Bad Pixel Removal only replaces single pixels, it does not worsen

the overall signal-to-noise ratio. The catch is that the bad pixel map is static

and doesn’t reflect the fact that bad pixels increase with both exposure time

and the lifetime of the camera.

4.5.3 Other RAW parameters

RAW files saved by the CHDK are not equipped with EXIF data (DNG files
are). This sounds like a drawback because EXIF data are very useful for
processing and archiving images. Vital information such as exposure time,
aperture, ISO speed, focal length, distance, etc., would be missing without
the EXIF data. But because the CHDK always stores both a RAW file and a
JPEG file (which does contain EXIF data), the missing EXIF data in the RAW
file can be easily restored from the JPEG file.

4.5 Shooting RAW 51

Prefixes and Suffixes
Tools such as DNG4PS-2 (section 4.5.4) and ZoRa Photo Director can auto-
matically pick the EXIF data from a corresponding JPEG file when process-
ing RAW images—provided that the image name starts with the prefix
IMG_ and that both the JPEG and RAW files are stored in the same folder.
You should enable the option RAW File in Dir with JPEG and set the param-
eter RAW File Prefix to IMG_ in order to make use of these tools.

The CHDK allows you to select different file name extensions for RAW
files. The purpose of this is to trick image uploaders that are not designed
to upload RAW images into uploading RAW files. However, if your image
uploader can handle the CRW file extension, or if you work with a card
reader, you should definitely use the CRW extension.

Similarly, you should use the extension DNG when you use DNG as your
output format. Enable the option ‘DNG’ file extension.

4.5.4 Processing RAW images

Many photo editors such as Photoshop, Paint Shop Pro, Picture Window, and
so on can import RAW images. And then there are the specialized, work-
flow-oriented RAW developers such as Aperture, Lightroom, CaptureOne,
Helicon Filter, BreezeBrowser, SilkyPix, DxO, RawTherapee, and others. These
programs have highly specialized tools for developing RAW images. Many
lens and sensor imperfections—such as chromatic aberration, pincushion
distortion, vignetting, sensor noise, and dead or hot pixels—can be cor-
rected. You will be surprised by the quality you can get from the lens of your
compact camera.

Unfortunately, not all of the above programs are happy with the RAW
format produced by the CHDK. One notable exception is the free RAW de-
veloper RawTherapee, which does an excellent job of converting CRW files
into TIFFs or JPEGs.

Your other option is to use the DNG format as RAW format (section
4.5.2). Alternatively, you can do the conversion from RAW to DNG on a PC
with the help of the free program DNG4PS-2.

You may very well ask, which is better: to conveniently create the DNG
file in-camera, or to shoot in native RAW format and let DNG4PS-2 convert
the images to DNG? The results are actually quite similar. This makes sense,
since RAW-to-DNG conversion never modifies the sensor data but only re-
packages it. The only exceptions are the bad pixels. When creating the DNG
file in camera, bad pixels can be removed (section 4.5.2). This is not the case
when you create a CRW file and convert it to DNG with DNG4PS.

52 CHAPTER 4 Teach Your Camera New Tricks

On the other hand, the DNG files produced by DNG4PS are about 30 percent
smaller. DNG4PS applies some lossless compression, which the CHDK does
not do—for speed reasons, obviously. But if disk space is an issue, you could
always feed the resulting DNG files into the Adobe DNG Converter and
compress them even further! That is actually all the Adobe DNG Converter
can do for you—in particular, it does not understand the RAW format CRW
produced by the CHDK.

So, yes, I prefer the in-camera creation of DNG files.

4.5.5 In-camera RAW processing

You don’t necessarily need a PC to process RAW files. With the CHDK it is
possible to develop RAW files within the camera. The selected RAW file will
be converted into a JPEG file.

Why should you do this? The advantage is that you can apply some
processing parameters after a shot has been taken, for example Color
Accent, Color Swap, one of the choices in MyColors, or a different White
Balance setting. You can even create different versions from the same RAW

Figure 4-36

The Settings dialog of DNG4PS. The

program is able to furnish the resulting

DNG files with the EXIF data found in

the corresponding JPEG files. You must

specify your camera under the tabs

Camera types and Camera options.

4.5 Shooting RAW 53

original. And because custom curves (section 4.3.8) are considered during
RAW development, you can create different variations of the image using
different curves.

How do you do this? It’s very simple:

1. Create your original file as a true RAW file (not as a DNG file).
2. Invoke the menu entry ALT > MENU > RAW Parameters > RAW Develop.

This will bring up the file browser (section 4.10.1).
3. Navigate to the image folder (e.g., CANON101/), find the image (using

date and time for orientation), and press FUNC/SET.
4. The camera will now ask you to switch to Recording Mode. To do so,

press ALT again. If the camera is in Playback Mode, switch to Recording
Mode.

5. Set your processing parameters (see above). See the manufacturer’s
manual for instructions.

6. Press the shutter button. Instead of taking a shot, the camera will read
the RAW file and produce a JPEG file using the current camera settings.

4.5.6 More RAW processing

The possibilities don’t stop with the RAW processing discussed in section
4.5.5. The context menu of the file browser (see section 4.10.1) opens a
whole new world of addititional RAW processing options. You can reach the
file browser through ALT > MENU > Miscellaneous Stuff > File Browser or
ALT > MENU > RAW Parameters > RAW Develop.

Besides the traditional file browser operations such as Cut, Copy, Delete,
Select Inverse (section 4.10.1), there are some interesting RAW processing
functions. Again, they only apply to true RAW files, not to DNG files.

Figure 4-37

In the file browser, you can mark files

by pressing the RIGHT button on each

file that you want to select. Pressing

the RIGHT button on a marked file

removes the mark. Pressing the LEFT

button pops up the context menu.

Pressing LEFT again closes the context

menu.

54 CHAPTER 4 Teach Your Camera New Tricks

 f RAW sum. This function adds the pixel values of all marked RAW files.
The effect is similar to taking an exposure with a longer exposure time.
For example, if you add 10 images, each exposed at 15 seconds, the re-
sulting image will almost look like an image taken with an exposure
time of 150 sec. This operation is very similar to the double exposures
taken with analog cameras.
The resulting image gets the same name as the last of the marked im-
ages, but the file name extension is set to .WAV in order to identify the
file as the result of the RAW merge operation.

 f RAW average. A similar operation, but it computes the average of the
pixel values instead of their sum. Thus, 10 images exposed at 15 sec-
onds will produce an image with the exposure time of 15 seconds. The
main reason for using this operation is to reduce noise. Averaging im-
ages is the most effective method of noise reduction without losing
detail. Make sure that the single images are perfectly aligned and that
there are no moving objects. Mounting the camera on a sturdy tripod
and using the series function (section 4.6.2), an intervalometer script
(section 5.7.1), or a remote control (section 4.9) is a must. If you don’t
have a tripod at hand, see section 4.3.6.

 f RAW develop. This function performs the same as the one discussed in
section 4.5.5 but applies RAW development to all marked images.

 f Purge RAW. This function purges all orphaned RAW files (but not DNG
files) that don’t have a corresponding JPEG file from a selected folder.
When applied inside a folder, it purges only orphaned RAW files that are
not marked. Therefore, marking a file can protect it from the Purge op-
eration. Typically, the Purge operation is used after you have deleted
some images with the native camera function. The native function only
deletes JPEG images, not the corresponding RAW files. So, purging can
reclaim some memory. Warning: Purging cannot be undone. It is safest
to do a backup of the card before applying the Purge function.

 f Sub from marked. This function subtracts the currently highlighted im-
age from all marked images. The resulting files get names composed
from the original file names, the Raw subtract prefix, and the Raw sub-
tract extension. Typically, image subtraction is used to detect move-
ments in a scene (for example, astronomers find new supernovas by
subtracting images). Again, use a sturdy tripod and a self-timer or re-
mote control (section 4.9) to trigger the shutter. If you unintentionally
introduce some shift between the images, relief images are more or less
the result.

 f DNG > CHDK RAW. The operations above all require true RAW files. But
if your shots are DNG files, all is not lost. Using this function, you can
convert marked DNG files back to RAW.

4.6 Bracketing 55

The functions Average, Sum, and Develop can also be invoked program-
matically via a Lua script (section 5.5.9), which allows automating such
superimposition tasks completely.

4.6 Bracketing

Bracketing is a camera function that produces a series of photos with vary-
ing settings. Traditionally, bracketing was used to obtain an image with
perfect exposure. First, an image with the measured exposure was made,
then an image half an f-stop overexposed, then an image half an f-stop
underexposed, then the same with a full f-stop. Even analog cameras had
the ability to perform bracketing in an automated fashion—which wasted
a lot of film.

Today, with digital imaging, bracketing can still be used to obtain a
perfectly exposed picture. It also has found new applications [Gulbins2009].
Combining the different pictures of a bracketing series into a single image
has become quite easy, and new algorithms for image processing provide
results that analog photographers can only dream of.

The traditional exposure series can now be used to combine the differ-
ently exposed images into a single image with a wider dynamic range. This
type of photography—called High Dynamic Range (HDR) photography (sec-
tion 4.6.2)—has become fairly popular among serious amateur photogra-
phers. The results often resemble a painting rather than a photograph.
During post-processing, you have many options for compressing the huge
dynamic range into a smaller and printable (or viewable) dynamic range. It
is certainly a matter of personal preference and taste as to how the results
will look.

 Exposure values aren’t the only items that can be bracketed; the same
is possible with focal distance. Starting from a measured or manually set
distance, the camera can make exposures with longer distances and
shorter distances (section 4.6.3). Later, during post-processing on a PC, the
images can be combined with the help of a special focus stacker. These
programs select the sharpest parts of each image and combine them into
a single image. The results are images with an extended Depth of Field
(DOF). This technique is typically used in macro photography where the
depth of field is very small.

4.6.1 General bracketing notes

Setting up the camera for an unlimited series of bracketing shots is very
easy under the CHDK. Just go to the Bracketing submenu and set the values
for the entries found there:

Figure 4-38

The Bracketing submenu is reached

via ALT > MENU > Extra Photo

Operations > Bracketing in Continuous

Mode. Here we see a typical

 configuration for shooting

HDR images.

56 CHAPTER 4 Teach Your Camera New Tricks

 f TV Bracketing Value. This entry is used for modifying the exposure time
during a series. A value of 2 results in an exposure time multiplication
factor of 22 = 4. So, if you start with 1/100 sec, you will get a shutter
speed series of 1/100, 1/25, 1/400, 1/6, 1/1600, and so on. This type of
bracketing is typically used for HDR work (section 4.6.2). It can also be
used for getting the perfect exposure when AV bracketing is not avail-
able.

 f AV Bracketing Value. This entry allows you to modify the aperture for
the individual shots in a series. For example, if you set the value to one
f-stop and the aperture to 5.6, you will end up with a series shot at ap-
ertures 5.6, 4.0, 8.0, 2.8, 11, etc. AV bracketing is not suited for HDR
work because the depth of field changes with each aperture change;
but it’s a good option for getting a perfectly exposed single image. This
menu entry is only available on cameras with a diaphragm.

 f Subj.Dist.Bracket Value. This entry is used for focus stacking, which is
discussed in the next section.

 f ISO Bracketing Value. This entry allows you to modify the ISO value. The
subentry Value Factor specifies a factor that is multiplied with the ISO
Bracketing Value—just to save you a few hundred keystrokes. The result
is added and subtracted from the original ISO value. For example, if you
start with an ISO value of 100, an ISO Bracketing Value of 2, and a Value
Factor of 10, you will end up with a series of 100, 120, 80, 140, 60, etc.
ISO bracketing is well suited for classical exposure bracketing when you
need the perfectly exposed single image, especially if AV bracketing is
not available. It is not as well suited for HDR work (see above) because
the signal-to- noise ratio changes with each ISO setting.

 f Bracketing Type. There are three bracketing types. Choosing “+/–” will
result in a series with alternating over- and underexposed images, typi-
cally used for finding the perfect exposure and for HDR work. The op-
tion “–” will result in a series of increasingly underexposed images.
Finally, the option “+” will result in a series of increasingly overexposed
images. The last two options are often used for focus stacking.

 f Clear Bracket Value on Start. If this option is enabled, the bracketing
values will be reset to default when the camera is powered up.

 f Add RAW Suffix. When this option is enabled and you shoot RAW
images, a suffix is added to the names of the resulting RAW files, for
example, IMG_2041_01.DNG, IMG_2041_02.DNG, IMG_2041_03.DNG. This
allows you to easily identify the bracketing series later. However, in the
CHDK file browser of DryOS cameras (section 2.2), the files will show up
as IMG_20~1.DNG, IMG_20~2.DNG, IMG_20~3.DNG, because the file browser
is limited to 8.36 filenames on this platform.

6 At most, eight characters in front of the dot, three behind it.

4.6 Bracketing 57

To enable bracketing, you must also set Disable Overrides in the submenu
Extra Photo Operations to Off (section 4.3.1) if you enabled the option
Include AutoISO & Bracketing in the same submenu. Then switch the cam-
era to Continuous mode. On cameras that support multiple shots taken
with the Custom Timer, Custom Timer is another possible option. This would
allow you to predefine the number of shots to be taken.

4.6.2 HDR and tone mapping

High Dynamic Range (HDR) and Dynamic Range Increase (DRI) Photography
have become quite popular among digital photographers. Both techniques
are used for recording contrast ranges that are beyond the maximum con-
trast range of a state-of-art camera sensor [Howard2008][Bloch2007].

Photographic scenes—especially those in full sunlight—can have a dy-
namic range of 16 to 25 Light Values (LV) or f-stops. Even the human eye
cannot capture such extreme contrast (it is limited to approximately 14 LV)
but must adapt itself when looking at dark or bright areas. The eye can do
this because it scans only a narrow area of a scene. The signals produced by
the eye are then processed by the brain, which composes them into a whole
scene again.

The camera does not have this ability. It must record an entire scene in
one step and therefore should be able to capture all the contrast in a scene.
That, of course, is not yet possible. Modern camera sensors can record a
dynamic range of 11–13 LV, a theoretical value that is lowered by noise and
other imperfections. In real-world applications, a camera sensor can cap-
ture a contrast range of 8–10 LV with good quality. When showing an im-
age on an LCD screen, a dynamic range of 5–7 LV can be reproduced, and
when printing an image on photo quality paper, 6 LV is a reasonable as-
sumption.

Because of this situation, you have to decide on the brightness sub-
range that you wish to record—meaning that you must choose the correct
 exposure. Brightness values outside that range will record as totally black
shadows and totally white highlights with no detail.

The contrast in the recorded image, which by now is 8–10 LV, must still
be compressed in order to reproduce all details in the image on a print or
on a screen. Typically, this is done in a photo editor such as Photoshop or
Paintshop Pro by modifying the brightness curve. With the CHDK, however,
it can also be done in-camera by using Custom Curves (section 4.3.8). This
tone mapping requires a bit of skill from the photographer; a brightness
curve that is too steep will result in contrasty images with blown-out high-
lights and dead shadows. A brightness curve that is too flat will result in a
flat picture, and vice versa.

58 CHAPTER 4 Teach Your Camera New Tricks

Enter the HDR method. The higher dynamic range is simply achieved by
making several images of the same subject: an image with the correct ex-
posure, an image two f-stops overexposed, and an image two f-stops un-
derexposed. You can go even further and make additional images: +4
f-stops, –4 f-stops, +6 f-stops, and –6 f-stops. Given a camera sensor con-
trast range of 8 LV (which should be a reasonable value for a compact
camera), we can capture a scene brightness range of 12, 16, or 20 LV with
this method.

There are a few rules to follow when creating such a bracketing series:

 f Zoom value, focus, aperture, white balance, and (if possible) sensor
speed must not be changed because such changes cause image
changes. All bracketing should be done by changing the shutter speed.

 f The sensor speed should be set to a low value, such as ISO 50 or ISO 100,
to avoid sensor noise.

 f There should be no moving objects in the scene. Some HDR composers
are able to remove moving objects (ghosts) from an image, but not al-
ways with good success. So beware of cars, moving people and animals,
and wind (leaves and branches move). At night, even the stars and the
moon can cause problems.

 f The illumination of the scene should not change during a bracketing
series. Otherwise, it will be difficult for the HDR composer to put the
images together correctly.

 f It is certainly an advantage to put the camera on a tripod, but modern
HDR composers are able to register the single images with each other
even if they are taken hand-held.

If all these conditions are met, you can set up your camera to shoot a
bracketing series:

 f Typically you would use a TV Bracketing Value of 2 and the Bracketing
Type “+/–”.

 f If you want the best quality, shoot RAW images. If you do, make sure
that the options ALT > MENU > RAW Parameters > Only First RAW in Series
and ALT > MENU > RAW Parameters > Exceptions > Disable Raw@Burst
are disabled.

 f You now have the choice of setting the camera to Continuous mode, or
of setting up the Custom Timer with 0 seconds delay and 3, 5, or even
7 shots. If you use Continuous mode, you need to count the pictures
yourself. The advantage of this mode is that you can pause the series
when somebody or someone moves into the scene. Just half-release
the shutter button and press it fully when you want to continue. The
Custom Timer, in contrast, does all counting for you—you just have to
press the shutter button.

4.6 Bracketing 59

After you have taken the individual images, the image series must be post-
processed and combined into one single image. If you produced RAW im-
ages, you should develop them with a RAW developer (section 4.5.4). Even
if your HDR image composer is able to accept RAW files, a RAW developer
will give you superior results because of the corrections that can be applied
to lens and sensor imperfections. You should at least reduce the chromatic
aberration and the noise and apply a first sharpening to the images. Start
with the first image in the series—the “correctly” exposed image—and
then apply exactly the same development parameters to all of the images
in the series. Most RAW developers allow you to copy the development
parameters from one image and apply them to others. Of course, your tar-
get file format would be TIFF and not JPEG because TIFF is lossless.

Next comes the step of composition. HDR and DRI composers know two
techniques for composing HDR series:

 f Weighted average. The pixel values of all images are added, but a weight
is applied to each pixel value. Pixel values of a dark pixel in an overex-
posed image get a higher weight, as do pixel values of a bright pixel in
an underexposed image.

 f Area oriented. The picture is segmented into different brightness areas.
Each area is treated differently and may get its pixels from a different
source image. With this method, there is almost no blending of images.
Therefore, it is well suited for images with moving objects in the scene.
Ghosts are hardly possible because most pixels come from only one
source image.

After composition, DRI and HDR go separate ways. DRI immediately applies
 tone mapping to reduce the tonal range of the image to a viewable and
printable size. It therefore can use standard file formats such as TIFF or
JPEG for the output.

HDR, in contrast, preserves the original dynamic range of the scene.
Therefore, it must use specialized file formats such as OpenEXR, Radiance
HDR, or 32-Bit-TIFF. Traditional file formats with 8 or 16 bits per pixel and
channel cannot capture the high dynamic range of an HDR image. Once
you save the composed image into an HDR-specific file format, you can
open the file later and decide how to map the dynamic range of the image
onto a smaller printable or viewable dynamic range.

This brings up the technique of tone mapping: reducing the huge dy-
namic range of the composite image into something smaller. Again, there
are different methods to achieve this:

 f Global tone mapping applies the same formula (in most cases, a logarith-
mic formula) onto each pixel. This is fast but can easily result in flat im-
ages. This technique is suitable for images with low or medium contrast.

 f Local tone mapping takes the neighboring pixels into account. Bright-
ness differences between neighboring pixels are weighted higher than

60 CHAPTER 4 Teach Your Camera New Tricks

brightness differences between distant pixels. This technique results in
good local contrast and is well suited for images with high contrast. The
images usually look crisper than the ones created with global tone
mapping because local structures are emphasized. When overdone,
however, artifacts such as halos can become visible.

Most of the established image editors such as Photoshop, Paintshop Pro,
and Picture Window support the creation of HDR and DRI images. For seri-
ous HDR work, however, we recommend a specialized HDR composer such
as the free Picturenaut (Windows), or HDR PhotoStudio, Hydra (Mac only),
Photomatix Pro, FDRTools Advanced, or Dynamic Photo HDR. For an example,
please see Figure 6-1.

4.6.3 Focus stacking

Depth of Field (DOF) is often a problem in photography. Only a distance
range within the image is sharp, while objects outside that area are blurred.
In particular, telephoto shots, macro work, and tabletop photography are
hampered by this problem. The traditional remedy is to stop down (or, in
the case of view camera and tabletop photography, to tilt the camera’s
back). Remember Group f/64—Ansel Adams and friends? The name was
derived from the fact that you had to stop down the large view cameras to
f/64 to obtain sharpness from near to far. Large cameras with long focal
lengths are, in fact, more affected by this problem than small cameras with
short focal lengths.

Nevertheless, small cameras also have their problems. If they have a
diaphragm, you cannot (and should not) stop down too much. Lenses with
short focal lengths are subject to diffraction problems when stopped down
too much. Apertures such as f/64 are definitely out of the question. There-
fore, compact cameras usually can only be stopped down to f/16. Many
small cameras don’t have a diaphragm at all, but use a neutral density (ND)
filter in case the scene is too bright. So the camera is always working at
maximum aperture with the lowest possible depth of field (DOF).

Focus stacking is a technique used to solve DOF problems. Images taken
with varying subject distances are combined in such a way that the sharp
areas from the single images are visible and the unsharp areas are invisible.
The result is a composite image with a very large DOF. This technique is
especially popular in macro photography.

The images can be combined manually by masking the unsharp areas
of each image and then stacking the images together. However, the results
are often unsatisfying because the transitions are not good. Heavy retouch-
ing is required. A better option is to use specialized programs, so-called
focus stackers, for this task. Programs such as the free command line

4.6 Bracketing 61

programs enfuse and tufuse, the free programs CombineZP and Picolay, and
also the commercial programs Helicon Focus, PhotoAcute Studio, and Zerene
Stacker can be used. Photoshop CS4 now offers focus stacking, too.

Taking the series of single photos requires a bit of planning. You must
make sure that the different DOF areas of the images overlap nicely so
that they can easily be combined into one large DOF area. Fortunately,
the CHDK offers a DOF Calculator (section 4.2.8). Switch it on by going to
ALT > MENU > OSD Parameters > DOF Calculator and enabling the entry Show
DOF Calculator. To be on the safe side, enable the entry Use EXIF Subj. Dist.
(PC65), too. You will probably get a reading that is a little too short, but that
is better than a reading that is a little too long. Then put your camera on a
tripod, point the camera at the closest point of your subject, focus, and note
down the following readings:

 f Subject Distance (S or SD)

 f Depth of Field (DOF)

Also, measure the distance to the farthest point of your subject (F). F–S is
your desired depth of field. Now you know the number of required shots. It
can be computed from the formula 2*(F–S)/DOF. For example: given a dis-
tance of 60 mm to the nearest point of your subject, a distance of 120 mm
to the farthest point of your subject, and a DOF of 12 mm, you would end
up with 2*(120–60)/12 = 10 exposures.

If you don’t use manual focus to do the measurements, you may want
to switch your AF Frame to Center for precise focusing.

Now you can configure the camera. If your camera features a manual
focusing mode, switch it on. Now dial in the following values:

 f To enable bracketing, you must set Disable Overrides in the submenu
Extra Photo Operations to Off (section 4.3.1) if you had enabled the op-
tion Include AutoISO & Bracketing (in the same submenu). Do not use
Overrides for the subject distance.

 f Now go to ALT > MENU > Extra Photo Operations > Bracketing in Continu-
ous Mode. Dial half of the measured DOF into the menu entry Subj.Dist.
Bracket Value. You need to set the subentry Value Factor unequal Off.
For example, if you measured a DOF of 100 mm, you could set the Value
Factor to 10 mm and the Subj.Dist.Bracket Value to 5. This would result
in a bracketing value of 50 mm.

 f As Bracketing Type select “+”. The camera will then make exposures with
increasing subject distance. For example, if you start at a subject dis-
tance of 500 mm and a bracket value of 50 mm, the camera will take
exposures at 500 mm, 550 mm, 600 mm, and so on.

 f Then switch the camera to Continuous mode. Again, focus on the near-
est point of your subject. Holding the shutter button half-pressed, turn

62 CHAPTER 4 Teach Your Camera New Tricks

the camera a bit to put your subject nicely into the frame. Start shoot-
ing by pressing the shutter button down and holding it there. Either
count the required number of pictures until you release the shutter, or
simply watch the display and observe how the sharpness area moves
beyond the farthest point of the subject matter.

Figure 4-39

Magnolia. Canon Digital Elph 1100SD (Ixus 80 IS). 1/60 sec, f/2.8, ISO 160. f=6.2 mm (~38 mm). Top left is the

first shot in a series of nine images; top right is the last. At a near distance of 142 mm, the measured DOF was

15 mm. The Subj.Dist.Bracket Value was therefore set to 7 mm. The whole covered range of sharpness is 10 x 7 =

70 mm. Image composition was performed with CombineZP. No artifacts were created during composition, so

retouching could remain at a minimum (some dust spots on the surface).

4.7 Edge overlay 63

4.7 Edge overlay

The CHDK Edge Overlay function is able to extract the edges from an image
as soon as you half-press the shutter button and overlay the resulting dia-
gram with the current content of the display. This allows viewing the previ-
ous shot and the current shot in context, making it easy to register images
and apply techniques such as onion skinning7.

Edge overlay has applications in panorama photography, stereo pho-
tography (with a single camera), time-lapse photography, bracketing
photography, and more.

Of course, it is possible to choose the color of the edge overlay (menu
entry Edge overlay color) or to show the edge overlay in Replay mode. A
threshold value (Edge overlay threshold) determines which brightness dif-
ferences are regarded as edge. The lower this value, the more and wider
edge lines you get; higher values create fewer and finer lines.

With the menu entry Lock Edge Overlay, you can temporarily freeze an
existing edge diagram so that it is not replaced by a new one when you
half-press the shutter button. Typically, you would use this option when you
want to register several images with one and the same reference image.

Edge overlays can be saved (Save Edge Overlay) to the folder CHDK/EDGE/
on the memory card. This allows you to use them at a later time. The func-
tion Load Edge Overlay opens the file browser (section 4.10.1), allowing you
to select an edge overlay file.

For example, if you want to photograph a tree at different times
throughout the year, you could save an edge diagram of the first picture
and reload it when you return to the scene. By registering the diagram with
the image in the display, you can be sure that the tree will always have the
same position in all images.

The zoom level is saved with the edge overlay as well, so when you re-
load an edge overlay (Load Edge Overlay), the camera is optionally set to the
stored zoom level if option Load+Set Zoom is enabled.

7 The term onion skinning refers to a technique of creating animated car-
toons by overlaying individual frames drawn on onionskin paper.

Figure 4-40

Edge overlay during a panorama shot.

When the first image is taken, the

CHDK extracts the edges of the

subject. Then the camera is turned.

Because the first image is still visible as

a “ghost”, the photographer gets the

opportunity to register the next shot

with the previous one.

Figure 4-41

The Edge overlay submenu

64 CHAPTER 4 Teach Your Camera New Tricks

The Edge Overlay function allocates some internal memory. When an
overlay is no longer needed, it is possible to regain the memory with the
function Free internal memory. Normally, this is only necessary on cameras
where internal memory is scarce.

4.8 More video options

The video functions of small cameras are often overlooked by photogra-
phers. We take photographs, not video clips, right? Well, with the CHDK
activated you may change your mind.

Video sequences are quite memory-hungry. That is the reason why the
camera compresses all video frames. Doing so saves a large amount of
memory but also reduces quality. To support different requirements, the
camera offers different video modes: 640 (640x480 pixels), 640 LP, and 320
(320x240 pixels). Compared to 640, the 640 LP mode generates only half
the amount of data, so that the maximum length of a video sequence is
doubled—albeit at a lower quality. The 320 mode produces only a third of
the data, resulting in a tripled maximum length. Some cameras also offer a
Compact mode (160x120 pixels for sending videos by email) that reduces
the amount of data by around a factor of nine. Here, the clip length is re-
stricted to three minutes.

Generally, the clip length is restricted to 4 GB or one hour, whichever is
shorter. Some older cameras only allow for 1 GB, but the CHDK removes
that limit. In addition, the CHDK allows you extended and fine-grained
control over video quality and compression. You have the option (in menu
entry Video Mode) to specify the quality, either in terms of compression
(CBR mode, Constant Bitrate) or quality (VBR mode, Variable Bitrate). When
the quality mode is used, the quality remains constant and the camera
automatically adapts the bitrate to the quality setting and subject matter.
A higher quality setting leads, of course, to a higher bit rate—and a subject
with finer details as well.

 f The Video Bitrate can be set to the values 0.25, 0.5, 0.75, 1, 1.25, 1.5,
1.75, 2, 2.5 and 3.

 f The Video Quality can be set to a value between 1 and 99, with 99 rep-
resenting the best quality with the least compression. The camera’s
native 640 mode is equivalent to a setting of 70–75.

So, you can in fact get a better quality than what the native video mode
provides. In particular, close-ups and out-of-focus objects will look more
natural. However, it may well be that the camera or the memory card is
unable to handle such a large amount of data. In this case, the CHDK shows
a warning sign (!) on the display. When the camera’s internal buffers over-
flow, the video sequence is aborted in a controlled manner.

Figure 4-42

The submenu for Video Parameters

4.8 More video options 65

Let’s discuss the other parameters:

 f Clear Video Params on Start? Enable this entry if you want to reset the
camera’s video facility to its native state on power-up.

 f Fast Video Control? This allows you to pause the video recording with
the LEFT button. You can then resume with the RIGHT button. Note:
This does not work with all cameras.

 f Video Quality Control? This allows you to change the video quality or
bitrate DURING recording with the UP (increase) or DOWN (decrease)
buttons. Again, this does not work with all cameras.

 f Enable Optical Zoom. Many of the supported cameras do not allow the
use of optical zoom during recording, but rather restrict the zoom to
the range of the Digital Zoom. Digital Zoom is not a bad thing when re-
cording video; it is silent, and the quality does not suffer much because
the camera sensor has a much higher resolution than what is needed
for video. Still, in combination with the Optical Zoom, you can get those
long-range zooming shots. For instance, when the optical zoom range is
3 and the digital zoom range is 4, you would get a zoom range of 12.
Unfortunately, for most cameras, the manufacturer has disabled the
Optical Zoom during recording, probably to avoid complaints from cus-
tomers who are irritated about the noise from the focus mechanism in
the soundtrack. The CHDK allows you to lift that restriction and enjoy a
wide zoom range. And the noise? Well, some editing of the soundtrack
is required. Unfortunately, the Enable Optical Zoom function does not
work on all cameras (it doesn’t on my SD1100, for example).

 f Mute During Zooming. This entry is not present on all cameras. It allows
you to mute the sound recording while zooming and thus avoid record-
ing the noise generated by the focus mechanism.

 f AF key. This entry is not present on all cameras. It allows assigning a key
(shutter halfpress or FUNC/SET) to the autofocus function. Pressing this
button during recording will cause an autofocus scan. For example,
when you start your sequence at infinity and pan on a close subject, you
can press this button and refocus on that subject.

 f Show Remaining Videotime. This entry controls the OSD during video
recording. You can hide the remaining recording time (Don’t), show it
(hh:mm:ss), show the current bitrate in kilobytes per second (KB/s), or
show both remaining time and bitrate.

 f Refresh Rate (~sec). This entry controls how often the remaining video
time is updated. Longer intervals result in more precise values; shorter
intervals are more up-to-date.

Your camera’s native video options probably include an option for creating
 time-lapse movies. This feature is quite limited; on my SD1100 I can select
between a one and a two-second interval. In section 5.7.1 we will discuss

66 CHAPTER 4 Teach Your Camera New Tricks

how to create advanced time-lapse movies with the help of the CHDK—in
HD quality, of course.

4.9 Remote control

Most Canon compact digital cameras do not come with a remote control—
neither an infrared (IR) remote control nor a wire-bound unit. In contrast,
some other manufacturers do provide such a unit—in most cases, an IR
remote control. Such controls, however, have a few disadvantages: The dis-
tance between the IR sender and the camera is limited, and the IR sender
must usually be positioned in front of the camera.

Many more advanced cameras, such as DSLRs provide the option of
controlling the camera through the USB port. The advantage here is that
different devices, such as wire-bound remote controls or radio frequency
(RF) based controls, can be connected to the camera.

4.9.1 CHDK remote control functions

The CHDK equips most Canon compact cameras with exactly such capa-
bilities. You have the choice between simple devices (battery and switch)
and more complex devices that support multiple functions or that can
hook up to a RC control system used for model airplanes and the like.

The native mode for simple USB switches is enabled in the upper sec-
tion of the Remote parameters submenu:

 f Enable Remote. Enables the USB remote function. When enabled, the
camera can be controlled through the USB port. This setting applies
both to scriptless and script mode.
Note: You must disable this entry if you want to transfer images through
the USB port to a PC. Otherwise, the PC would be recognized by the
camera as a remote control.

In scriptless mode, the camera must be in normal shooting mode and be
operated through the button of the remote control. You can make the cam-
era focus with a short click to the button of the remote control (equivalent
to a shutter button half-press). To take a shot, you must perform a “reverse
click”—releasing the button and immediately pressing it down again.

On some cameras, the USB remote can even be used in playback mode:
clicking the remote control will advance through the pictures (in reverse
order) just as if you clicked the LEFT button. This can be nice; you can stand
back while your audience gathers around the display.

Figure 4-43

The Remote parameters submenu can

be reached via ALT > Miscellaneous

Stuff > Remote parameters. It has two

sections: one for simple USB switches,

as shown in section 4.9.2, and one for

remote controls supporting the Ricoh

CA1 protocol.

4.9 Remote control 67

In scripted mode, the camera is in the <Alt> state and is running a
script. A signal at the USB port is recorded as a button click under the but-
ton name “remote”, or can be intercepted with a special command. We will
discuss these scripts in section 5.7.5.

4.9.2 Building a simple remote control

In the USB specification, each pin has a special purpose. While electrical
ground is assigned to Pin 4, Pin 1 is used for the supply voltage. The CHDK
interprets the presence or absence of the supply voltage as a signal. You can
test this easily even without a proper remote control. First, enable the
Remote function, then connect a USB cable to the camera and quickly
connect-disconnect-connect the other end to the USB port of a PC. Because
the PC delivers supply voltage at Pin 1, the CHDK will interpret this as a
signal from a remote control and will fire:

USB Pins

Pin Purpose Wire Color

1 VCC (+5V) Red

2 Data – White

3 Data + Green

4 Ground Black

A USB cable release is relatively easy to build. A small battery is needed to
supply a voltage of not more than 5V (Warning: the USB specification al-
lows for a maximum of 5V. Your camera might be damaged if you use a
higher voltage.) The minimum voltage required depends on the camera.
You may find it on the CameraFeatures reference page of the CHDK wiki
(http://chdk.wikia.com/wiki/CameraFeatures). Some cameras are happy
with 3 volts (or even less), but other cameras require up to 4.5 volts.

+
Battery

Switch

1 red

4 black

Type A USB receptable

3 x 1.5 V

Figure 4-44

Wiring diagram for a USB remote

switch. The battery here delivers 4.5

volts, which should be sufficient for

any camera. This voltage is safe even if

the camera operates at a lower voltage.

The USB specifications require the

camera to tolerate a voltage of 5V or

less at Pin 1. But be sure to get the

polarity of the battery right: wrong

polarity could damage your camera!

68 CHAPTER 4 Teach Your Camera New Tricks

So, what do you need to build a cable release? First, a USB cable that you
can sacrifice, then a switch and a battery. A good option is a small LED
flashlight that you can buy for a few cents. With such a flashlight, a USB
Type-A to mini-A cable, and some soldering skills, you can build your own
 remote control. For an example, see https://sites.google.com/site/canonre-
motehowto/. For building a DIY infrared remote control, see www.instruc-
tables.com/id/Remote-for-Canon-Compact-Cameras/.

Figure 4-45

A cheap LED flashlight (1) is the basis for a homemade USB remote control. It’s important that it have a switch

and not be turned on or off by twisting its head. This one has four batteries resulting in a voltage of 6V. One of the

batteries must be removed because we only need 4.5V. The spring at the bottom end must be stretched a bit to

bridge the gap of the missing battery. The LED (2) is twisted off with tweezers. A voltmeter is used to test which

contacts are positive and negative. Then the larger USB plug is removed from a spare mini USB cable. The head of

the flashlight is stripped over the cable; then the red wire is soldered to the positive contact (3) and the black wire

 to the negative contact. The flashlight head is screwed on again and sealed with epoxy or hot glue (4).

4.9.3 SDM functions

The remaining functions in the Remote parameters submenu under the
 header “synchable remote” (Figure 4-43) were originally developed in the
Stereo Data Maker (SDM) project (section 7.5) but are now also part of the
CHDK. These functions require a Ricoh CA1 or a compatible remote control.

 f Enable Remote. This entry enables the SDM functionality in scriptless
mode. The camera can now be controlled through the Ricoh CA-1.

 f Enable Synch. Allows synchronizing two or more cameras through
linked remote controls. This option is typically used for stereo or matrix
photography (section 7.7.4).

 f Enable Synch Delay. Enables delay settings for synchronized cameras
down to 1/10,000 sec. Although not recommended, it is possible to
synchronize different camera models by using a Synch Delay with one
camera (section 7.7.4).

 f Synch Delay 0.1ms. A delay can be dialed in down to 1/10,000 sec. This
is added to the value in the following entry.

 f Synch Delay 0.1s. A delay can be dialed in down to 1/10 sec. This is
added to the value in the previous entry.

4.9 Remote control 69

 f Enable Remote Zoom. Allows controlling the zoom of multiple synchro-
nized cameras through the remote control on cameras with a single
zoom switch or rocker. To do so, the camera must first be brought into
remote zoom mode. This is done by manually clicking the zoom switch
quickly. The blue <Alt> button should light up, and the zoom can now be
operated using the button on the remote. When it reaches the longest
or shortest focal length, the zoom direction will reverse. You can exit the
zoom mode by half-pressing the shutter button, by half-pressing the
Ricoh switch, or by simply waiting for time-out (see below). Afterwards,
the remote control can be used to fire the shutter.

 f Zoom Time-out 0.1s. Specifies a zoom time-out value in seconds. (The
label specifies an incorrect time unit of 0.1 sec. The actual time unit is
1 sec.) After this time, the camera leaves the zoom mode and returns to
normal shooting mode. Time-out values between 2 and 10 seconds are
possible.

4.9.4 Extra hardware

It isn’t really necessary to learn soldering to get your own remote control
device. Some vendors are offering devices that can hook up to the camera’s
 USB port and that are supported by the CHDK.

 f The Ricoh CA1 USB remote control works with the CHDK functions
listed under “synchable remote”. The release button has a half-pressed
and a pressed position. A double click is therefore not necessary to
shoot a picture. A single 1.5V AAA cell powers the device. A built-in
DC-DC converter pushes the 1.5V up to the required signal voltage.

 f The GentLED devices from Gentles Limited (www.gentles.ltd.uk/
gentled/) allow remote control of cameras by wire, infrared, or RC con-
trol systems. These products support both the Ricoh CA1 and the native
CHDK protocol. Using the native protocol, these devices can encode
different functions using different pulse lengths that can be evaluated
by a script. For example, the different joysticks of an RC remote control
can be assigned to different functions, such as shooting, zooming, or
 focusing.

4.9.5 Tethered shooting?

Tethered shooting is the ability to transfer images immediately to a con-
nected PC without saving them on a memory card. In a studio situation or
for time-lapse work, this makes a lot of sense because you aren’t limited by
the capacity of the card. You also save the extra step of transferring images.

70 CHAPTER 4 Teach Your Camera New Tricks

Does the CHDK support tethered shooting? Currently, no. If you are
looking for this functionality, you may want to check out the program
PSRemote from Breeze systems. If your camera is on the manufacturer’s list
of supported Powershot models, you will be able to control the camera
from the PC and upload images immediately. You even get a remote live
viewfinder on the PC screen, along with some of the tricks the CHDK is
famous for, such as grids, automatic bracketing, and overlays.

If you own an older Powershot model, you may want to try Canon’s own
 remote control software, Remote Capture, that comes for free. Unfortu-
nately, Canon has discontinued this software; the latest version is from
2004.

Another option is to use a wireless SD card such as the Eye-Fi card (www.
eye.fi) for automatic transfer from camera to computer.

Finally, with the CHDK spin-off Stereo Data Maker (SDM), you can do
semi-tethered shooting. Here, a script can alternate between shooting and
uploading images to the PC-based WIA loader (section 7.6).

4.10 Utilities

Apart from photographic functions, the CHDK also implements some utili-
ties and fun programs such as a file browser, file reader, calendar, and
 games. These programs can be accessed via ALT > MENU > Miscellaneous
Stuff.

4.10.1 File browser

The file browser is invoked via ALT > MENU > Miscellaneous Stuff > File
Browser. It is used to inspect the content of the memory card and to man-
age the files and folders found there (Figure 4-47).

Navigation in the file browser is easy. Simply use the UP and DOWN
 buttons to select a folder, and press FUNC/SET to move into that folder. The
 zoom rocker can be used to scroll a whole page up or down. Navigating
backwards into a parent folder is performed by selecting the entry ../ and
pressing FUNC/SET.

Selected files and folders can be deleted with the DISP button. After
pressing this button, you are asked if you want to delete the selected file.
Use the LEFT button to highlight YES and press FUNC/SET to delete the file.
Folders can only be deleted if they don’t contain nonempty subfolders. If
they do, first navigate inside the folder and delete the subfolders. Then re-
turn to the parent folder to delete the folder in question.

The RIGHT button can be used to mark files. Another click on the RIGHT
button removes the mark from marked files. Marked files play a role in the

Figure 4-46

The Miscellaneous submenu allows

accessing utilities and also provides

various display options.

4.10 Utilities 71

 functions from the context menu. This is invoked by pressing the LEFT but-
ton. Another click on the LEFT button closes the context menu.

Most of the functions of the context menu are related to RAW file process-
ing. We have already discussed that function in section 4.5.6. Only a few
general file management functions remain:

 f Cut. Cuts all marked files from the current folder and stores them in the
clipboard. If no file is marked, the selected file is cut.

 f Copy. Copies all marked files from the current folder and stores them in
the clipboard. If no file is marked, the selected file is copied.

 f Paste. This function is only available if the clipboard does contain files.
It will copy the files in the clipboard into the current folder.

 f Delete. Deletes all marked files. If no file is marked, the selected file is
deleted.

 f Select Inverse. Unmarked files are marked, and marked files are un-
marked.

4.10.2 Text file reader

The Text File Reader is typically used to look into text files stored on the
 memory card. For example, you might want to look into the comments of a
script file, or read a README file or some other documentation. As its name
says, the Text File Reader only allows reading files, not modifying them. It is
also restricted to plain text files—PDFs, HTML pages, or Office files are not
in the scope of the Text File Reader.

When starting the Text File Reader with the function Open New File…
you will first see a file browser showing the contents of the folder CHDK/
BOOKS/. Now navigate to the file that you want to open and press FUNC/
SET. If you want to reopen the file later, you can invoke Open Last Opened
File.

Figure 4-47

The functions of the context menu

apply to marked files only. Here, two

files are marked (appearing here as

grayed).

Figure 4-48

The Text File Reader allows opening

and reading text files. It has its

own settings for fonts and codepage,

and supports word wrapping and

auto scroll.

72 CHAPTER 4 Teach Your Camera New Tricks

When the file is showing, you can scroll downwards with the RIGHT
 button, the DOWN button, and the ZOOM_IN button. You can scroll up-
wards with the LEFT button, the UP button, and the ZOOM_OUT button.
The MENU button leads back to the Text File Reader submenu:

 f Here, the function Select RBF Font opens the font browser (section
4.2.2). A larger font may be easier to read, but it also reduces the amount
of text that can be displayed on one page. Not all fonts support all na-
tional characters. So, if national characters (umlauts and the like) don’t
display correctly, you may want to try another font.

 f The Codepage option allows selecting between Win1251 and DOS code-
pages. If a text file does not display correctly and shows strange charac-
ters, you might want to try the other codepage.

 f The reader always wraps lines that are too long to display into the next
line. When the option Wrap by Words is set, it will try not to wrap within
words but to honor word boundaries.

 f Finally, the Enable Autoscroll option can make the reader scroll auto-
matically. Every time the specified Delay expires, the reader scrolls down
one page.

4.10.3 Getting information about the camera

Under ALT > MENU > Miscellaneous Stuff there are a few useful functions
that display information about the camera:

 f Show build info. Shows the current version of the CHDK in use and re-
lated information.

 f Show memory info. Displays free memory available in the camera RAM
and the space used by the CHDK.

More information is found in the Debug submenu. Most of this informa-
tion supports CHDK developers, but some of it may be useful for “normal”
users. Warning: Before playing around with the options of this submenu,
make a backup of your memory card—and in particular, a backup of the
CHDK configuration file CHDK/CCHDK.CFG. Entering bad values can cause
the CHDK to fail at start-up. In this case, you must be able to restore the
configuration file from an earlier version (section A.2).

 f Debug Data display. This can be used for displaying Property Cases (sec-
tion 5.6), parameters, and operating system tasks (only when running
under VxWorks) on the OSD. Because there are many of these values,
the display can be positioned to a section within the values by setting
the entries PropCasePage and Task List start to appropriate values.

4.11 Novelty 73

 f Show Misc Values. Shows some values for service and programming
purposes.

 f Memory Browser. Invokes the memory browser that displays memory
content on the screen. The memory address can be changed with the
LEFT and RIGHT buttons; the DISP button changes the step width (Incr).
The MENU button returns to the Debug submenu.

 f Benchmark. Launches a benchmark utility for evaluating the perfor-
mance of the camera memory, display, and memory card. Simply press
FUNC/SET to start the benchmark, sit back, and wait. Press MENU to
return to the Debug submenu.

 f ALT +/- debug action. Assigns specific debug functions to the +/- key
(DISP key on SD/Ixus). If set to DmpRAM, the key will write a complete
memory dump to the card. If set to Page, the key will scroll through
Property Cases and Parameters (see above) and toggle the scrolling di-
rection when pressed twice. If set to CmpProp, the key will compare
Property Cases. To use this function, first press the +/- key in <Alt> mode;
then leave the <Alt> mode and change some camera settings; then re-
turn to the <Alt> mode and press the +/- key again. The display will now
show up to 12 Property Case values that have changed.

4.11 Novelty

Finally, there are a few functions that seem to have absolutely nothing to
do with photography. But maybe you want to play a few games with your
camera while you wait for the right shooting light.

4.11.1 Games

Games on a camera? Why not! If you can take photos with a Nintendo
Gameboy, why not play games with your camera? So, the CHDK offers four
games: Connect4, Mastermind, Reversi, and Sokoban. You’ll find all of these
games in the submenu ALT > MENU > Miscellaneous Stuff > Games.

Before invoking a game, you must put the camera into Replay mode.
The game starts right away, and you can use the following keys to interact:

 f Reversi: UP, DOWN, LEFT, RIGHT: Move cursor; FUNC/SET: Draw/Restart
Game; DISPLAY: Camera against camera; MENU: back to the Games
submenu.

 f Sokoban: UP, DOWN, LEFT, RIGHT: Move; FUNC/SET: Change level (only
at start of a game); DISPLAY: Restart current level; ZOOM_OUT: Undo
moves; ZOOM_IN: Redo moves; MENU: back to the Games submenu.

74 CHAPTER 4 Teach Your Camera New Tricks

 f Connect4: LEFT, RIGHT: Select column; FUNC/SET: Drop ball/Restart
game; MENU: back to the Games submenu.

 f Mastermind: LEFT, RIGHT: Select column; UP, DOWN: Select color;
FUNC/SET: Next row/Restart game; MENU: back to the Games sub-
menu.

While trying to beat your camera, you should now and then have a look at
the battery level displayed in the lower part of the info section. Maybe
you’ll still need some battery power when the shooting light turns perfect.

4.11.2 Flashlight

The Flashlight option (ALT > MENU > Miscellaneous Stuff > Flashlight) is only
available on cameras with a fold-out display. When in Record mode, the
display turns out, swivels towards the scene, and turns all-white. This al-
lows you to illuminate the scene during set-up, or simply use it as a flash-
light to find your way in the dark. However, it cannot act as a light source
when you actually take a shot; the camera turns the display dark at that
very moment.

4.12 The CHDK configuration file

All of the choices that you make in the CHDK menus are stored on your
memory card in the file CHDK/CCHDK.CFG. This file can be edited on the PC,
too. The CHDK Config File Editor (CFGEDIT) is a utility that runs on Windows,
Linux, and Mac OSX. It allows editing this file conveniently on the large
screen of your desktop or laptop computer. All you need is Java Runtime
installed on your computer. Then simply download the editor and double-
click on the JAR file to execute it.

Because all configuration options are stored in a single file, it is rela-
tively easy to switch between different configurations. The script con-
figsw.lua developed in section 5.7.6 allows doing just that. However, this
script will only switch the CHDK configuration, not the native camera con-
figuration.

4.12 The CHDK configuration file 75

 Figure 4-49

The CHDK Config File Editor in action.

A double-click on an entry opens a

specific editor for the selected entry

value.

76 CHAPTER 4 Teach Your Camera New Tricks

5.1 Launching and configuring scripts 77

5 Scripting

The ability to control the camera with a script is one of the outstanding
features of the CHDK. With scripting, you can automate almost every pho-
tographic task. You can shoot time series, react to motion, shoot all sorts of
 bracketing series for high dynamic range photography (HDR) or increased
 depth of field, and much more. In fact, many users say that camera auto-
mation via scripting has been the main reason they installed the CHDK.
Therefore, we will discuss scripting in detail and also present some sample
scripts1 from different areas where scripting can be useful.

On the Internet, and in particular on the CHDK website, you will find a
large number of premanufactured scripts—mostly for time series, motion
detection, and bracketing. Many of these scripts have only been tested
with a few camera types. So, before using such a script, try it out and estab-
lish whether it works properly with your camera. In particular, older scripts
written for the DIGIC II cameras need some adaptations to run on DIGIC III
or DIGIC IV cameras, and vice versa. Therefore, even if you do not plan to
write your own scripts, it is worth taking a closer look at CHDK script devel-
opment.

Newer builds of the CHDK support two scripting languages: the simple
 uBasic and the more advanced Lua language. The majority of existing
scripts are written in uBasic simply because it’s been supported by the
CHDK since the very first version. Because uBasic is simple, it is well suited
for beginners. Lua, on the other hand, requires some knowledge about
basic concepts of computer programming.

5.1 Launching and configuring scripts

Scripts are stored on the memory card in the folder CHDK/SCRIPTS/ or a
subfolder. To load a script, first switch to the <ALT> mode, then press the
FUNC/SET button2. Now the script menu will display. Select Load Script from
File … and press FUNC/SET again. The file browser (section 4.10.1) will be
shown positioned at folder CHDK/SCRIPTS/. Navigate to the script that you
want to load and press FUNC/SET again. The script is now loaded and can

1 All scripts are found on the book CD.
2 If you had set the option User Menu Enable to OnDirect, you first need to

close the user menu by pressing the MENU button.

78 CHAPTER 5 Scripting

be executed immediately by pressing the shutter button. Pressing the shut-
ter button another time will interrupt the script execution immediately.

The next time you turn on the camera and the CHDK is activated, the
selected script will be loaded automatically. To execute it, it is sufficient to
switch to the <ALT> mode and press the shutter button. It is even possible
to run a script automatically at start-up. This is enabled by setting the entry
 Autostart in the script menu to On. However, you should do this only with
well-tested scripts—otherwise, you could run into an error every time you
turn on the camera.

The Autostart feature can be used to initialize the camera with custom
settings when it is switched on. For example, in automatic mode, my little
SD1100 IS always switches the flash to AUTO. (In manual mode, it remem-
bers the flash mode of the previous session.) The camera offers no option
to always start with the flash switched off. This is unfortunate—I like avail-
able light shots much more than shots with the built-in flash. Sometimes,
in low-light conditions, I forget to switch the flash off—the flash fires, and
the mood is gone.

Here, the CHDK can help. A tiny script performs the necessary key
presses to switch the flash off. By loading the script flashoff.lua and set-
ting the Autostart parameter to On, I can make sure that this script is exe-
cuted at start-up and that I always start with a disabled flash. Here is the
script, written in Lua:

--[[

@title Flash off

]]

while get_flash_mode() ~= 2 do

 click("right")

 click("right")

 click("set")

 sleep(10)

end

exit_alt()

It’s dead simple (apart from the header, which we will discuss later). While
the function get_flash_mode() does not return the value 2 (this value in-
dicates that the flash is switched off, see section 5.5.5), the script continues
to bring up the camera’s flash menu with a click on the RIGHT button. Then
it clicks RIGHT again to change the flash mode and confirms the change
with a click on FUNC/SET. At the end of this sequence is a sleep(10) in-
struction, sending the script to sleep for 10 milliseconds and allowing the
native camera tasks to do their work.

The final instruction is necessary because otherwise the script would
leave the camera in <ALT> mode where no shooting is possible. Of course,

5.2 uBasic 79

as soon as you load another script, the new script will run at start-up, so it
is necessary to reload flashoff.lua before switching off.

Many scripts can be configured with parameters. These parameters are
defined in the header section of the script. After the script has been loaded,
they are listed in the bottom section of the CHDK Script menu. The param-
eter values shown there can be modified with the LEFT, RIGHT, and FUNC/
SET keys. If a script has many parameters, it can be tedious to set up all the
parameters before running the script. The CHDK therefore offers the pos-
sibility to store frequently used parameter combinations in parameter sets.
Ten of those sets exist (0–9). By modifying the value of the menu entry
Parameters set, you can easily switch among different parameter combina-
tions.

5.2 uBasic

The original uBasic interpreter was written by the Swedish programmer
Adam Dunkels. He said, “I’ve always wanted to write a really small BASIC
interpreter. So I sat down for an hour or two and did it.” It’s probably true.
uBasic is tiny, and there are only a few commands to learn. The original
uBasic interpreter didn’t even understand labels—instead you specified
line numbers as GOTO targets, just like in the days of the legendary C64.
Labels were later added by Pablo d’Angelo who is also the main contributor
for the Hugin panorama stitcher.

So, let’s jump right into another small script and see how uBasic looks
these days. (A more systematic introduction into uBasic is given in the fol-
lowing sections.) The following script implements an electronic magnify-
ing glass by switching the camera into the Digital Macro mode and setting
a predefined magnification level. Also, most of the info texts are hidden
from the display.

@title Digital Magnifier

@param m Initial Magnification

@default m 3

This is the header section of the script. The title will appear at the bottom
of the display after the script is loaded. You should avoid using more than
24 characters; otherwise, the title would override the <ALT> indicator.

The title declaration is followed by the declaration of the parameters
providing input to the script. With the @param instruction, you specify a
variable name and a parameter description. Variable names for parameters
always consist of a single lower case letter. In newer CHDK versions, you
can have variable names from a–z, in older versions only a–j. The parame-
ter description is shown in the script menu (ALT > FUNC/SET) below the

Figure 5-1

The CHDK Script menu. The upper half

is used for general script configuration,

such as script loading, delaying the

execution of the script for a specified

number of 1/10 secs, resetting to the

default parameter values, and

switching and saving parameter sets.

The lower half is reserved for the script

parameters. Here are some of the

parameters from the motion detection

script discussed in section 5.7.3

80 CHAPTER 5 Scripting

script title. End users are free to supply a value or to accept the default
value. The @default instruction specifies this default value.

Because the script needs some time to set the camera up, we use that
time by giving the user something to read—for example, the usage of the
camera buttons during loupe mode:

print "Press MENU to cancel"

print "Zoom = magnification"

print "Shutter/2 = refocus"

This is good practice. When you allow for some user interaction, always
explain how to use the controls. Sometimes scripts are not used for a long
time, so the user might have forgotten how to operate the script.

rem init

if m < 1 then m = 3

 Comment lines begin with the token rem. Comment lines are not executed
and do not affect the state of the camera. Their purpose is documentation.
Nevertheless, many comments can slow down a script. After each script
line (including comments), the CHDK pauses for 10 milliseconds to let the
camera do its work and look after user inputs. Newer CHDK builds, how-
ever, allow for larger comment blocks—they pause only once for up to
100 consecutive comment lines.

During initialization, you should check the validity of the parameters
and correct them as necessary. We set the input parameter to its default
value if the user entered an invalid value. A magnification of 0 is obviously
nonsense.

let s = 0

if m > 1 then s = 3

if m > 2 then s = 5

if m > 3 then s = 6

From the specified magnification, we compute the zoom step value. This
value will be used later for setting the zoom level. This section depends on
the camera model; different camera models have different zoom granular-
ity. While A-series cameras have 9 or 15 zoom steps, S-series cameras fea-
ture 129 steps. It would be possible to retrieve the number of zoom steps
from the camera and come up with a more general logic for selecting the
right zoom step, but for now we leave it at that for simplicity.

5.2 uBasic 81

rem DigitalMacro

o = get_display_mode

d = 1

gosub "display"

p = 0

e = -32248

gosub "mode"

Then we start to set up the camera. First, we save the current display state
into variable o, so that when leaving the script we can reset the previous
state. We assign the desired display state (No Info = 1) to variable d. The
 subroutine display will click the DISP button until that state is reached.
Because uBasic subroutines do not support variables and don’t return val-
ues, we must transfer data between subroutine and caller via variables.

To switch the camera mode, we will work a little bit differently. The
variable p will count the number of RIGHT clicks to reach the DigitalMacro
mode. We initialize it with 0. Then we assign –32248 to variable e. This
value represents the DigitalMacro mode (section 5.6). The subroutine mode
will pick up that value; press FUNC/SET, RIGHT, FUNC/SET repeatedly until
this mode is reached. Both subroutines (display and mode) are discussed
below. It’s important to know that by simulating key presses, we can reach
any camera function via a script that we can reach manually. It’s good
practice not to make assumptions about the initial state of the camera,
and to restore the initial state when the script ends.

rem set zoom level

q = get_zoom

gosub "zoom"

gosub "focus"

Next, the initial zoom level is saved into variable q, and the desired zoom
level (stored in variable s) is set in subroutine zoom. Afterwards, subroutine
focus is called to focus the camera to the subject matter.

cls

rem Event loop until MENU pressed

do

 wait_click

if is_pressed "zoom_in"

 then gosub "zomin"

 if is_pressed "zoom_out"

 then gosub "zomout"

 if is_pressed "shoot_half"

 then gosub "focus"

until is_pressed "menu"

82 CHAPTER 5 Scripting

After the DigitalMacro mode is set up, the magnification is set, and the
camera is focused, the screen is cleared with cls (so that printout is re-
moved from the display). The digital magnifying glass is now ready for use.
Because the script controls all camera functions in the <ALT> mode, the
user has by default no ability to focus or to change the zoom level. If you
want to provide the user with such possibilities, you must implement the
necessary interaction.

The script does this within a do- loop where it waits for a key click. It
analyses this click and—depending on the key pressed—calls the corre-
sponding subroutine. The keys zoom_in and zoom_out are the zoom rock-
ers, and the key shoot_half is the half-pressed shutter button. The loop
ends when the MENU button is pressed.

rem restore camera state

s = q

gosub "zoom"

gosub "restor"

d = o

gosub "display"

rem leave alt mode

exit_alt

end

After the MENU button is pressed, we clean up behind us and reset the
camera to its original state. We do this by assigning the saved values for the
zoom level and display state to the transfer variables s and d, and then
calling the subroutines zoom and display again. For restoring shooting
mode, the subroutine restor is called. Finally, the script turns the <ALT>
mode off.

:zomin

click "zoom_in"

sleep 200

return

:zomout

click "zoom_out"

sleep 200

return

:focus

press "shoot_half"

do

 r = get_shooting

5.2 uBasic 83

until r = 1

release "shoot_half"

return

These are the subroutines for user interaction. They simulate button
presses and wait (sleep) for some milliseconds to give the camera time to
perform the task. Zooming in and out is quite simple this way. Focusing is a
bit more demanding. First, we have to half-press the shutter button. In-
stead of using the click command that simulates only a short click, we use
a press command to hold the shutter button half-down. Then we wait
until the command get_shooting returns the value 1. This indicates that
focusing has finished, so we can now release the shutter button.

:zoom

r = get_zoom

if r < s then

 for n = r to s

 click "zoom_in"

 sleep 200

 next n

else if r > s then

 for n = s to r

 click "zoom_out"

 sleep 200

 next n

endif

return

The subroutine zoom is used to set the initial zoom level or to restore it at
the end of the script. First, it asks get_zoom for the current zoom level. If the
desired zoom level in variable s is larger than the current one, it clicks the
zoom_in button repeatedly to adjust for the difference—and vice versa, if
the current zoom level is larger than s, the button zoom_out is clicked in-
stead. This way, we reach the desired zoom level independently from the
initial zoom level.

 :display

r = get_display_mode

while r <> d

 click "display"

 sleep 1250

 r = get_display_mode

wend

return

84 CHAPTER 5 Scripting

The subroutine display asks the camera for the current display state. The
necessary clicks are performed only if it differs from the desired state. It
then sleeps for a while to let the camera adjust to the new settings. This is
done repeatedly until the desired result is reached.

:mode

r = get_prop 49

while r <> e

 click "set"

 sleep 1250

 click "right"

 sleep 1250

 click "set"

 sleep 1250

 p = p + 1

 r = get_prop 49

wend

return

The subroutine mode works in a similar way. The main difference is that it
has to perform a whole series of clicks to switch to the next mode (FUNC/
SET, RIGHT, FUNC/SET). It also counts the number of mode switches in
 variable p. There are many sleep instructions in this subroutine. Switching
modes is quite hard work for the camera; in some cases lenses have to be
shifted, and so on. Depending on the camera, some tweaking may be nec-
essary for the necessary sleep intervals.

Because there is no direct uBasic command for obtaining the current
camera mode, we need to retrieve the mode in a different way. Here we
read out the value of Property Case 49 (section 5.6) that reflects the current
camera mode. It should be mentioned that this part of the script runs only
under the DryOS operating system (Digic III and Digic IV) because property
IDs and mode values differ between VxWorks and DryOS. We will see later
that the script language Lua provides the necessary capabilities to write
platform-independent scripts.

:restor

click "set"

sleep 1250

for r = 1 to p

 click "left"

next r

sleep 1250

click "set"

sleep 1250

return

5.3 uBasic primer 85

Finally, the subroutine restor is used to restore the initial mode. It simply
does the opposite of subroutine mode: instead of stepping right in the mode
menu, it steps left. The number of steps is stored in variable p.

5.3 uBasic primer

After this initial hands-on contact with uBasic, we are now going to explore
the language systematically.

5.3.1 Variables

Variables are denoted by a single letter. While early CHDK versions only
supported the letters ‘a’ – ‘j’, newer versions support the letters ‘a’ – ‘z’ and
also the upper case letters ‘A’ – ‘Z’. This results in 52 different variables.
However, in the script header (parameters), only lower-case variable names
are allowed.

Variables can contain both integer and floating-point values. String
variables are not supported in uBasic. (Some CHDK spin-offs allow for
string variables.)

5.3.2 Assignments

Assigning a value to a variable starts with the command let, for example:

let a = b * c

assigns the product of b and c to a. But let is just a noise word; we can omit
it happily without any problems:

a = b * c

means the same and is valid uBasic, too. In a CHDK script I would prefer this
notation because it is shorter.

The following arithmetic operators are supported:
+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder

86 CHAPTER 5 Scripting

5.3.3 Output

The print command can be used to show information on the camera dis-
play. A print command can have an unlimited number of parameters. Pa-
rameters are separated by commas or by semicolons. During output, the
commas appear as space; the semicolons appear as no space. For example:

print "a:", a;"s"

will produce the output

a: 500s

if the variable a has the value of 500. Please note that an output line must
not exceed 25 characters in length.

The command print_screen allows capturing the output into a file.

print_screen n

with n > 0 switches capturing on. All output written with print will go into
file LOG_n.TXT in subfolder CHDK/LOGS/, too.

n = 0 switches capturing off. For example,

print_screen 5

print "hello"

print_screen 0

print "bye"

will produce a file LOG_0005.TXT containing the string “hello”.
Finally, the command cls (clear screen) removes the output produced

with the print command from the display.

5.3.4 Conditional clauses

Conditional clauses are built with the if ... then ... else ... endif
construct. For example:

if a < 0 then

 b = 3

else

 b = 4

endif

5.3 uBasic primer 87

Relational operators allowed in uBasic are:
= (equals)
> (greater than)
< (less than)
<> (not equal)
<= (less than or equal)
>= (greater than or equal)

It is possible, too, to connect several conditions using the operators and, or,
xor, and not. Parentheses may be used to indicate which operators are ex-
ecuted first:

if (a = 1 or a = 2) and b < 0 then ...

If there is nothing to do in the else case, the else clause can be omitted:

b = 4

if a < 0 then

 b = 3

endif

does just the same and runs faster because each program line in uBasic
involves a delay of 10 msec.

In simple cases, it is possible to combine all of these statements into
one line and omit the endif:

if a < 0 then b = 3 else b = 4

or

b = 4

if a < 0 then b = 3

Here, the second version is slower because it needs two lines of code.
Note: This shorthand notation without an endif can, however, only be

used standalone and not nested inside another if ... then ... else ...
endif construct. In this latter case, you must use the full statement prop-
erly closed with endif.

5.3.5 Case structures

The select statement is a convenient way to avoid complex if ... then
... else constructs. It allows executing different statements depending
on the value of a variable:

88 CHAPTER 5 Scripting

select x

case 3,4,7; print "3, 4, or 7"

case 10 to 20; print "10 to 20"

case_else print "neither"

end_select

The first case statement specifies a list of values that can be of arbitrary
length. If the value of x matches a list element, the instruction behind the
semicolon is executed. In contrast, the second case statement specifies a
value range. If the value of x is within that range, the statement behind the
semicolon is executed. Optionally, a case_else statement can be used to
execute a statement if none of the specified case statements did apply. If
you want to execute more than one instruction after a case statement, you
must enclose those instructions into a subroutine and call it with gosub
(section 5.3.8).

Note: If you also plan to write scripts that run on the Stereo Data Maker
(SDM, section 7.9), you should avoid the select statement because it is not
supported in the SDM.

5.3.6 Loops

The for-loop is used to increment a counter from a start value to an end
value and to execute the instructions within the loop for each counter
value:

for i = 1 to n

 sleep 10000

 print "Shot", i, "of", n

 shoot

next i

takes n shots every ten seconds and prints a protocol for each shot on the
 display. As you can see, the for-construct is closed with the command next
specifying the variable to be incremented.

By default, the increment value of the for-construct is 1. By using the
step clause, however, it is possible to specify a different increment value:

for i = 1 to 10 step 3

 print i

next i

will print the values 1, 4, 7, 10.

5.3 uBasic primer 89

Another loop construct is the while ... wend construct. Here, you have
to organize your counters by yourself. while ... wend loops run until an
arbitrary logical condition fails.

i = 1

while i <= n

 sleep 10000

 print "Shot", i, "of", n

 shoot

 i = i + 1

wend

does exactly the same as the for-loop shown before.
The construct do ... until is quite similar:

i = 1

do

 sleep 10000

 print "Shot", i, "of", n

 shoot

 i = i + 1

until i > n

The difference with the while ... wend construct is that the loop body is
executed at least once because the condition is checked at the end of the
loop. The while ... wend construct may not execute the loop body at all if
the condition after the while fails during the first pass.

In the CHDK implementation of uBasic, loops can be nested to a depth
of four.

5.3.7 Labels and GOTOs

The goto statement allows you to leave the linear execution and jump to
another location in the script. While early uBasic versions only supported
line numbers after the goto, recent uBasic versions support labels. This is
much better because line numbers are subject to change when new lines
are inserted into a script.

goto "restart"

90 CHAPTER 5 Scripting

Of course, such a label needs to be defined—and this is the syntax:

restart:

 print "script restarted"

While goto statements seem to be very convenient and flexible, they im-
pose dangers, too. GOTOs are considered harmful in professional program-
ming because programs tend to become incomprehensible and difficult to
maintain if there are many of them jumping all over the place. So, if you
can, use if ... then ... else ... endif, for ... next, or while ...
wend instead of goto. In a tiny script, however, I can’t see why a goto should
do any harm.

5.3.8 Subroutines

Subroutines have a very similar syntax as GOTOs, but they can simplify
programs instead of making them more difficult to read. A subroutine
definition starts with a label and ends with a return statement:

:waitdisp

 do

 print "Continue: DISP"

 wait_click 3000

 until is_pressed "display"

return

This subroutine prompts the user to press the DISP key and then waits until
this key is pressed. The advantage of defining such a piece of code in a
subroutine is that it can be called from any location within the script by
using the gosub statement:

gosub "waitdisp"

shoot

The return command within the subroutine will cause program control to
return to the line after the gosub command and execute the instruction
found there.

The CHDK uBasic implementation supports nested subroutines to a
depth of 10.

5.3 uBasic primer 91

5.3.9 Comments

Anything behind a rem command (including the rem command) is regarded
as a comment and has no influence on processing.

gosub "waitdisp" rem waits on disp

Almost no influence, that is.

rem waits on disp

gosub "waitdisp"

will execute slower because the extra line attracts a delay of 10 millisec-
onds. So don’t overdo it with comments in scripts. Comments need space,
too, and space can become scarce for complex scripts. The CHDK sets an
upper limit of 8 KB on each uBasic script.

5.3.10 Script structure

A script starts with a header section that defines the title and the parame-
ters, as we saw in section 5.2. This is followed by the main body of the
script. Subroutines are usually defined at the end of the script.

The main body typically consists of seven parts:

 f The first section informs the user which script functions are triggered by
pressing buttons.

 f The second section makes sure that no bad parameter values are passed
to the processing section. Usually, when a bad parameter value is de-
tected, the default parameter value is assigned. In addition, you may
want to print a message onto the display.

 f The third section initializes the variables used in the processing section.
Initial variable values may be fixed or may depend on parameter values.
It may also be necessary to scale parameter values. For example, a pa-
rameter accepts values in centimeters but is fed into a uBasic command
that expects millimeters. In this case, we would multiply the parameter
value by 10.

 f The fourth section saves the initial camera state values into variables so
that the camera state can be restored at the end of the script.

 f Then, the main processing section performs the task that was intended
by the script.

 f Finally, at the end of the script, the initial camera state is restored. If the
script does not run to the end by itself (because it runs in a loop), you

92 CHAPTER 5 Scripting

should always offer a button to end script execution gracefully. Pressing
the shutter button to interrupt a script should only be done in case of
emergency, because it is not possible to restore the initial state.

 f The final command in a script is the end command.

5.4 Lua primer

To the photographic community, Lua is known as the scripting language for
Adobe Lightroom. So, if you have already developed scripts for Lightroom,
you have a head start on CHDK scripting. Under the CHDK, Lua features
more commands and functions than uBasic, is more platform-independent,
and executes about 100 times faster. On the other hand, Lua is an advanced
script language that you cannot master in one afternoon. Here, we will
only introduce the basics of Lua; a description of the complete language
would be beyond the scope of this book. If you are interested in Lua beyond
CHDK scripting, we recommend reading the reference manual [Lua51Ref].

5.4.1 Variables

Unlike uBasic, variable names in Lua can be longer than a single character.
This allows for an arbitrarily large number of different variables. A variable
name must start with a letter or an underscore (_). However, variable
names used as CHDK parameters in the script header (section 5.4.12) must
consist of a single lower-case letter and can only accept numeric values.
There is also an anonymous variable—typically used as a placeholder—
with only the underscore (_) as its name.

Variables can be defined as global or local. Local variables are only avail-
able in the local context of the defining block (section 5.4.6) or function
(section 5.4.9). Their definition starts with the keyword local, e.g.,

local speed = 250

In contrast to uBasic, variables are not restricted to numeric values; they
can also contain strings, complex structures (tables), and functions (sec-
tion 5.4.9). The initial value of a variable is nil (nothing). In the CHDK
implementation of Lua, numeric values are restricted to integer values—
floating-point arithmetic is not supported. This has implications for porta-
bility; the result of computations may differ depending on the platform
where you execute the script (section 5.8).

5.4 Lua primer 93

5.4.2 Strings

Strings are enclosed in single (‘...’) or double (“...”) quotes, or in dou-
bled square brackets ([[...]]). With this latter form, it is possible to define
strings that stretch across multiple lines. Strings can contain most of the
escape sequences used in other programming languages such as C or Java:
\f for a form feed, \n for a new line, \r for the carriage return. Strings can
be concatenated with the .. operator:

"CH"..'DK'

5.4.3 Tables

Tables are a core concept in Lua. Tables can contain an arbitrary number of
elements—numbers, strings, functions, and other tables.

Table definitions are enclosed in curly brackets ({}). Anything (except
nil) can be a table element. Table elements can be addressed through the
element index. For instance:

disp_table = {'info', 'no_info',

 'off', 'electronic_viewfinder'}

print(disp_table[2])

would print ‘no_info’ because indexing starts at 1. The number of table ele-
ments can be obtained through the operator #:

print(#disp_table)

would print ‘4’.
Alternatively, table elements can be associated with explicit keys, in

which case the table works as a dictionary:

reverse_disp_table = {info = 0,

 no_info = 1, off = 2,

 electronic_viewfinder = 3}

In this case we could address the elements by their key:

print(reverse_disp_table["info"])

would print ‘0’. The following dot notation is also possible:

print(reverse_disp_table.info])

94 CHAPTER 5 Scripting

Such dictionary tables should not be accessed via indices because no as-
sumptions can be made about the order in which the elements are stored.
Note that keys must not contain white space.

5.4.4 Assignments

Assignments look very similar to those in uBasic, except that the let com-
mand is not used:

a = b * c

Lua supports the same arithmetic operators as uBasic, plus the ^ operator
for exponentiation.

Assigning values to table elements is possible, too. For example:

t[i] = [[multi-line

 string]]

Another difference is that lists of values can be assigned to lists of vari-
ables. For example:

a, b = 3, 4

assigns 3 to a and 4 to b. This form of assignment is often used for func-
tions that return multiple values. If individual values are not needed, the
anonymous variable “_” can be used:

_, b = 3, 4

Here, 4 is assigned to b and 3 is thrown away.

5.4.5 Output

The print() function can be used to create output on the display. Similar
to uBasic, several parameters can be specified, but the semantics are differ-
ent: individual values are separated by TAB, not by a single white space. The
semicolon cannot be used to concatenate two strings. Instead, we use the
string concatenation operator (..). For example:

print('a: '..a..'s')

would produce the output

a: 500s

if the variable a had the value of 500. Unlike uBasic, Lua allows the output
of strings longer than 25 characters. Longer strings are wrapped into the
next line.

5.4 Lua primer 95

The CHDK functions cls() and print_screen() work exactly the same
as the equivalent commands in uBasic. There is one exception:

print_screen(false)

can be used to disable output to a log file.

5.4.6 Blocks

Blocks are statement sequences that are enclosed by do ... end. Their
main purpose is to allow the definition of local variables that are only valid
within the block. Blocks may be nested.

5.4.7 Conditional clauses

Similar to uBasic, conditional clauses are built with the if ... then ...
else ... end construct. The difference is that the construct is not closed
by a specific endif token but by the more generic end token. For example:

if a < 0 then

 b = 3

else

 b = 4

end

The else clause may be omitted, but in contrast to uBasic, it is not possible
to omit the end token even for single line constructs:

if n < 0 then n = 0 end

Nested if statements can be simplified with the elseif token. Instead of:

if a < 0 then

 b = -1

else

 if a > 0 then

 b = 1

 else

 b = 0

 end

end

96 CHAPTER 5 Scripting

it is possible to write:

if a < 0 then

 b = -1

elseif a > 0 then

 b = 1

else

 b = 0

end

which is easier to read and to understand. Lua does not feature a select
statement (section 5.3.5), but a sequence of elseif clauses can be used for
the same purpose.

Relational operators allowed in Lua are:
== (equals) (uBasic: =)
> (greater than)
< (less than)
~= (not equal) (uBasic: <>)
<= (less than or equal)
>= (greater than or equal)

It is also possible to connect several conditions with the operators and, or,
and not. Parentheses may be used to indicate which operators are executed
first:

if (a = 1 or a = 2) and b < 0 then ...

5.4.8 Loops

Similar to uBasic, the for-loop is used for incrementing a counter from a
start value to an end value and for executing the instructions within the
loop for each counter value. For example:

for i = 1,n do

 sleep(10000)

 shoot()

end

takes n shots every 10 seconds.
By default, the increment value of the for construct is 1. By using a third

value in the for clause, however, it is possible to specify a different incre-
ment value:

5.4 Lua primer 97

for i = 1,10,3 do

 print(i)

end

would print the values 1, 4, 7, 10.
A second form of the for statement—called the generic for state-

ment—allows iteration over a series of values, such as the elements of a
 table. Using the built-in function ipairs(), we can write:

disp_table = {'info', 'no_info', 'off', 'electronic_viewfinder'}

for i,v in ipairs(disp_table) do

 print(i,v)

end

This results in the output:

1 info

2 no_info

3 off

4 electronic_viewfinder

The same is possible for dictionary tables that are accessible via keywords.
Instead of ipairs(), the function pairs() is used in this case:

t = {info = 0, no_info = 1, off = 2, electronic_viewfinder = 3}

for key,value in pairs(t) do

 print(key,value)

end

The result of this script would be:

electronic_viewfinder 3

off 2

info 0

no_info 1

Note that in this case the order in which the values are obtained cannot be
predicted.

In addition to the various flavors of the for statement, Lua also features
a while statement and a repeat statement. The latter replaces the do...
until construct found in uBasic.

98 CHAPTER 5 Scripting

i = 1

while i <= n do

 sleep(10000)

 shoot()

 i = i + 1

end

does exactly the same as the first for loop shown at the beginning of this
section.
The construct repeat ... until behaves quite similarly:

i = 1

repeat

 sleep 10000

 shoot

 i = i + 1

until i > n

The difference in the while construct, however, is that the loop body is
executed at least once because the condition is checked at the end of the
loop. The while construct may decide not to execute the loop body at all if
the condition after the while fails during the first pass.

Both while and repeat loops can be aborted with the break statement,
which always exits the innermost loop:

i = 1

while true do

 if i > n then break end

 sleep(10000)

 shoot()

 i = i + 1

end

Here we have used the Boolean value true in the while condition, which
results in a loop that never stops. To break the loop, we check the inverse
condition in the if statement and execute the break command if the con-
dition holds.

The above control statements are fully sufficient to express any kind of
control flow in a script— goto statements and labels are not really neces-
sary. Consequently, Lua does not offer GOTO.

5.4 Lua primer 99

5.4.9 Functions

Instead of subroutines as in uBasic, Lua features more versatile functions.
Each function consists of a function header, with a function name and
parameters, and a function body. The whole function definition is enclosed
by the pair function ... end. The list of parameters is enclosed in paren-
theses and separated by commas. Even parameterless functions use these
parentheses with—aka—an empty list of parameters. For example:

function waitdisp()

 repeat

 print("Continue: DISP")

 wait_click(3000)

 until is_pressed("display")

end

In contrast to uBasic, functions can return one or several values. This is
done with the return command followed by a single return value or by a
comma-separated list of return values. The following function returns the
time difference between the function start and a click on the specified
 button in milliseconds:

function stopwatch(k)

 t = get_tick_count()

 repeat

 wait_click(3000)

 until is_pressed(k)

 d = get_tick_count()-t

 return d

end

A special statement to invoke a function (like the gosub in uBasic) is not
necessary—it is sufficient to simply invoke the function by its name, fol-
lowed by the list of parameters enclosed in parentheses. For example:

d = stopwatch("display")

print(d)

A very powerful feature is the ability to assign a function definition to a
variable. The function definition can then be passed as a parameter to
other functions, stored in a table, or even returned as a result of another
function. The following code assigns an anonymous function to the vari-
able hello:

100 CHAPTER 5 Scripting

hello =

 function() print('hello') end

The function can later be invoked via

hello()

5.4.10 Error handling

Another big advantage of Lua over uBasic is the ability to run pieces of code
in protected mode. This means that an error condition detected inside this
code is not propagated to the surrounding code. Your script can gracefully
handle this error and continue to run. The built-in function pcall() can
execute other functions in protected mode. For example:

status,result = pcall(stopwatch,k)

As you can see, pcall() can return multiple values:

 f If no error occurred, the first return value (status) has the value true,
followed by the return values (if any) of the called function. In the above
example, result would contain the result of function stopwatch().

 f If an error occurred, the first returned value is false, followed by the
error message in the second return value.

In addition to the errors raised by Lua itself, errors can also raised by a script
through the error() function. The first parameter of this function is an
error message. The optional second parameter may contain an error level
that indicates which additional information the Lua interpreter will add to
the error message:

 f 0: no additional information.

 f 1 (default): the location where the error() function was called.

 f n: the error location n levels up in the caller hierarchy.

Lua also knows an assert instruction, which is usually used to test the
conditions under which a piece of code is allowed to run.

assert(cond, msg)

If the expression cond results in false, an error is raised with the content of
the parameter msg as an error message. The code following the assert

5.4 Lua primer 101

instruction can therefore be sure that the condition holds. Using assert
frequently can considerably improve the safety and robustness of a script.

5.4.11 Comments

Anything behind a -- token (including the -- token) is regarded as a com-
ment and has no influence on processing. For example:

wait_click(3000) -- wait 3 secs

Multi-line comments are simply written as a multi-line string behind the
comment token:

--[[This comment

stretches across multiple lines]]

5.4.12 Script structure

Just like uBasic CHDK scripts, Lua CHDK scripts start with a header section
defining title and script parameters. This is followed by the main body of
the script as outlined in section 5.3.10. The title and parameter section
must be provided in the form of a multi-line comment containing the title
and parameter definitions as known from uBasic.

--[[

rem 22-Sep-2009 by bdaum

@title Countdown

@param t ticks(sec)

@default t 10

]]

Comments within such a block can be written with the uBasic syntax (rem).

5.4.13 Standard Libraries

Unlike uBasic, Lua features a library concept so that new functionality can
be added to the Lua core without much effort. Libraries are sets of pre-
defined Lua functions that you can invoke in your program after you have
loaded the library. In addition, a library can immediately execute state-
ments during the loading process. It is even possible for a library to return
values to the loading script by executing a return command.

102 CHAPTER 5 Scripting

Some standard libraries are already included in Lua, such as:

 f Basic library for some core functions

 f Input and output library

 f Operating system facilities library

 f String manipulation library

 f Mathematical functions library. The CHDK version of this library differs
substantially from the standard version because all functions dealing
with floating point numbers have been removed (section 5.4.1).

Other libraries can easily be added to Lua by placing them into the folder
/CHDK/LUALIB. Before such a library can be accessed in a script, it must be
loaded. This is done with the statement:

require("library_name")

where the library name is written without the suffix “.lua”. It is possible to
assign the result of function require() to a variable. Often libraries con-
struct a table containing all public functions and values defined in the
library, and return this table to the loader. The loader may then retrieve
these functions and values. For example:

props = require("propcase")

id = props.DISPLAY_MODE

Here the library propcase.lua has returned the table props containing a
value under key DISPLAY_MODE. This technique helps avoid name clashes
when several libraries are used at the same time.

The following libraries are automatically loaded:

Lua core functions
The core library implements functions such as the already discussed
pcall(), error(), or print(). The following functions can also be useful:

dofile(fname) Loads the specified file as a new Lua script and executes it.

tonumber(p,b) Converts p to a number to the specified base b. If b is
omitted, a base of 10 (the decimal system) is assumed.

tostring(p) Converts the parameter p into a string.

type(p) Returns the type of p. Possible return values are: “nil”,
“number”, “string”, “boolean, “table”, “function”, “thread”,
and “userdata”.

5.4 Lua primer 103

 IO functions
The Lua IO library provides access to file input and output. Using these
functions, it is possible to read and write files located on the memory card.
We will only give a short overview of the most important IO functions. Ex-
amples for the application of these functions are found in section 5.7.1.

file, msg, no = io.open(filename, mode)

opens a file with the specified name and in the specified mode. A “b”
appended to the mode strings indicates a binary file:

"r" Read mode (the default if the mode parameter is omitted).

"w" Write mode. A new file is created, and existing files are overwritten.

"a" Append mode. Appends to the end of an existing file.

In case of an error, the return variable file is nil and an error message is
given in msg, an error code in no.

ret, msg, no = io.close(file)

ret, msg, no = file:close()

Closes the specified file. In case of an error, ret is nil, and an error message
is given in msg, an error code in no.

ret, msg, no = io.flush()

Performs all outstanding buffered write operations and makes sure that all
written data is physically stored.

ret, msg, no = file:lines()

Creates an iterator over the lines in a text file. It can be used in the follow-
ing way:

for line in file:lines()

 do ... end

Here, the variable line will subsequently contain each line in the specified
file. If no more lines are available, nil will be returned.

104 CHAPTER 5 Scripting

value1,... = file:read(format1,...)

For each of the specified formats, read() will return a numeric or string
value read from the input file. If the specified format cannot be satisfied,
nil is returned instead. The following formats are available:

"*n" Reads a number.

"*a" Reads the whole file, starting at the current position. If the current posi-
tion is at the end of the file, nil is returned.

"*l" Reads the next line. nil is returned at the end of the file.

number Reads a string with up to the specified number of characters. nil is
returned at the end of the file.

pos, msg = file:seek(mode, offset)

positions the write and read pointers to the specified offset in the file, be-
ginning at the origin specified in mode. offset can be omitted and defaults
to 0 in that case. In case of an error, pos is nil, and an error message is given
in msg.

"set" Starts at the beginning of the file.

"cur" Starts at the current position. This is the default when the mode
parameter is omitted.

"end" Starts at the end of the file and subtracts the offset.

Example:

function fsize(file)

 local current_pos = file:seek()

 local size = file:seek("end")

 file:seek("set", current_pos)

 return size

end

This function determines the size of a file. It first saves the current position
into the local variable current_pos, and then positions to the file end and
stores that position in the variable size. As a good citizen, it restores the
original position and then returns size as result.

5.4 Lua primer 105

ret,msg,no = file:write(value1,...)

writes the values passed in the parameters to the specified file. Only
numeric or string values are allowed as parameters. In case of an error, ret
is nil, and an error message is given in msg, an error code in no.

 Operating system functions
Only some of the standard Lua OS functions are supported in the CHDK.

r, msg = os.remove(filename)

deletes a file or directory with the specified name. If it succeeds, true is
returned. If it fails, nil is returned, followed by an error message. The func-
tion will fail on an attempt to delete a directory that is not empty..

r,msg = os.rename(oldname,newname)

renames the file or directory specified in oldname to the name given in
newname. If it succeeds, true is returned. If it fails, nil is returned, followed
by an error message.

Caution! Attempting to rename a nonempty directory may result in file
system corruption! Attempting to move a file to another directory by re-
naming it can lead to unpredictable results. The rename() function may
produce unpredictable results if the target name already exists.

t = os.time(table)

returns the time specified in table as a single number (number of seconds
since January 1, 1970). The table has the following keywords: “year”,
“month”, “day”, “hour”, “min”, “sec”, “dst”, “wday”. “dst” represents a Bool-
ean value that is true for daylight savings time; “wday” represents the day
of the week (Sunday = 1).

If the parameter table is missing, the function delivers the current date
and time as a number:

s = os.date(format, time)

The date() function works the other way round. The format string speci-
fies how a numeric date value will be converted into a string. If the second
parameter is missing, the current date is used. The format string can con-
tain short control sequences (‘%’ followed by a letter) that will be replaced
by year, month, day, etc. The following control sequences are possible:

106 CHAPTER 5 Scripting

%a Abbreviated weekday name (e.g., Thu)

%A Full weekday name (e.g., Thursday)

%b Abbreviated month name (e.g., Sep)

%B Full month name (e.g., September)

%c Date and time (e.g., 09/24/09 23:57:10)

%d Day of the month (e.g., 24)

%H Hour, 24-hour clock (e.g., 23)

%I Hour, 12-hour clock (e.g., 11)

%M Minute (e.g., 57)

%m Month (01 = January, e.g., 09)

%p Either “am” or “pm” (e.g., pm)

%S Second (e.g., 10)

%w Weekday (0 = Sunday, e.g., 4)

%x Date (e.g., 09/24/09)

%X Time (e.g., 23:57:10)

%Y Full year (e.g., 2009)

%y Two-digit year (e.g., 09)

%% The character ‘%’ when used as a literal

For example:

s = os.date("today, %B %d, %Y")

returns

"today, September 24, 2009"

A special case is the format string ‘*t’. In this case, the date() function
returns date and time in the form of a table, as seen in the discussion of the
time() function.

In addition to the above functions, the CHDK implementation provides
some more functions that are not part of the standard Lua OS library
(which implements only those OS functions that are part of ANSI C). Con-
sequently, scripts utilizing those functions cannot be tested on another
platform such as a PC, except with an appropriate OS extension library
(section 5.8).

5.4 Lua primer 107

r, msg, no = os.mkdir(dirname)

creates a new directory with a specified path name such as “A:/CHDK/
WORK”. Please note that the path name must not end with a slash. If the
 function succeeds, true is returned. If it fails, nil is returned, followed by
an error message and an error number.

t, msg, no = os.stat(filename)

delivers a table t containing information about the specified file.

Key Value

dev Device number

mode Meaning unclear

size Size in bytes

atime Last access time

mtime Last modification

ctime Last status change

blksize Block size in bytes

 blocks Number of blocks in the file

attrib Bit mask of DOS attributes

is_dir true for a directory

is_file true for a file

If the function fails, nil is returned, followed by an error message and an
error number.

r, msg, no =

 os.utime(filename,atime,mtime)

sets the time of last access and the time of last modification for the speci-
fied file. If atime or mtime is omitted or nil, the current time is used. If the
function succeeds, true is returned. If it fails, nil is returned, followed by
an error message and an error number.

t, msg, no =

 os.listdir(dirpath,showall)

108 CHAPTER 5 Scripting

lists the contents of the specified directory. The result is returned as a table
of file names. If the function fails, nil is returned, followed by an error
message and an error number. If the optional parameter showall is true,
the list will contain the entries “.”, “..”, and deleted entries, too.

 String manipulation functions
The CHDK implements the Lua string manipulation library completely. The
library comes with some powerful functions:

l = string.len(s)

Returns the character length of a string. The same is achieved with the operator #:

l = #s

t = string.rep(s,n)

Returns a string where string s is repeated n times.

t = string.upper(s)

Returns string s converted to upper case.

t = string.lower(s)

Returns string s converted to lower case.

t = string.sub(s, from, to)

Returns a substring of s starting at position from and ending at position to.
Indexes start at 1; negative indexes are counted from the end of the string.

t = string.char(n,...)

Converts the integer parameters to characters and concatenates them to a string.

n = string.char(s, i)

Converts the i-th character of s into an integer. Indexes start at 1; negative indexes
are counted from the end of the string.

t = string.format(f, n1,...)

Formats the content of the parameters n1,... with the help of format description f.
The formatting rules are quite similar to that of the printf() statement of ANSI C.

For example
tag, title = "b", "chdk"
string.format("<%s>%s</%s>", tag, title, tag)

returns
chdk

Often used format characters are the following:

%d %i Decimal signed integer

%o Octal integer

%x %X Hex integer

%u Unsigned integer

%c Character

5.4 Lua primer 109

%s String

%q Quoted string. The string is formatted so that it can safely be read back
by Lua.

%% %. No argument expected.

i,j = string.find(s1, s2, k)

Searches for the substring s2 in string s1 and returns the indices for the first and the
last character of s2. If s2 is not a substring of s1, the function returns nil. The param-
eter k is optional and may specify the start index for the search.

t,n = string.gsub(s1,s2,s3,k)

Replaces all occurrences of string s2 in string s1 with string s3. Returns the resulting
string and the replacement count. The optional parameter k can limit the number of
replacements.

The functions find() and gsub() accept patterns, too—strings with inter-
spersed control sequences. Most control sequences start with “%” followed
by a character, optionally followed by a modifier character (see below).
These control sequences describe character classes such as “letters” or
“digits”.

. All characters

%a Letters

%c Control characters such as new line or form feed

%d Digits

%l Lowercase letters

%p Punctuation characters

%s Whitespace characters

%u Uppercase letters

%w Alphanumeric characters

%x Hexadecimal digits

%z The character “0”

% Escape character. % followed by another character represents the
character itself. Escaping is particularly necessary for the characters
() . % + - * ? [^ $. For example, “%%” represents “%”.

Using uppercase control characters after the “%” negates the character
class identified by the corresponding lowercase character. For example, %S
stands for anything except white space.

You can define your own character sets by enclosing the characters be-
longing to the set within brackets:

[+–] for example, means ‘+’ or ‘–’.

110 CHAPTER 5 Scripting

A modifier character describing how often a character of that class is
expected can follow a character class sequence:

none Exactly one occurrence

+ At least one occurrence

* Any number of occurrences; works greedily (tries to consume longest
sequence possible to succeed)

- Any number of occurrences; works non-greedily (tries to consume short-
est sequence possible to succeed)

? Optional (0 or 1 occurrence)

 Command sequences that match a character sequence can be captured,
meaning that the matching character string will be accessible. A capture is
achieved by putting a command sequence into parentheses. The matching
character sequence is then delivered as an extra result by the find() func-
tion. For example:

_, _, m, d, y = string.find(

 "9/25/2009", "(%d+)/(%d+)/(%d+)")

assigns 9 to m, 25 to d, 2009 to y. Each capture (%d+) tries to find one or
more digits until the next slash or the end of the string, and it delivers the
matching substring as a result.

Capture results can be used in the pattern itself or in the substitution
string of the gsub() function. They are symbolized by the control sequences
%1, %2, representing the result of the first capture, the second capture,
and so on. For example:

string.gsub("log.txt",

 "(%w+)%.(%w+)", "%1_1.%2")

would result in “log_1.txt”.

 Table manipulation functions
Because tables are an essential construct in Lua, there is also a standard
library with functions for conveniently manipulating them.

s = table.concat(table,sep,i,j)

Concatenates the table elements i..j into a string, each separated by separator
sep—provided all elements are strings or numbers. sep, if omitted, defaults to the
empty string. i and j default, if omitted, to 1 resp. the length of the table.

5.4 Lua primer 111

table.insert (table, pos, value)

Inserts value at the specified position into the table, shifting existing elements at and
behind that location one position towards the end of the table. If pos is omitted, the
value is appended at the end of the table.

m = table.maxn (table)

Returns the maximum positive index of the table. If no positive index exists, 0 is
returned.

e = table.remove (table [, pos])

Removes the element at the specified position from the table and returns it. If pos is
not supplied, the very last element in the table is removed.

table.sort (table, comp)

Sorts the elements in the table. Optionally, a function can be supplied in comp defin-
ing the sort order. The function receives two table elements as parameters and must
return true if the first element is considered smaller than the second element.

Example:

table.sort(table,
 function(a,b)
 return a > b
 end
)

will sort the table in the opposite order because it returns true when the second
parameter is smaller than the first.

 Mathematical functions
Because the CHDK implementation of Lua only supports integer numbers,
mathematical functions in the Lua mathematical library, such as sin() or
log(), would make no sense. The mathematical library therefore boils
down to:

math.max() Returns the maximum of its arguments

math.min() Returns the minimum of its arguments

math.pow(x,y)

or

x^y

Raises the first parameter to the power of the second
parameter and returns the result

math.random(x,y) Generates random numbers between x and y. If x is omitted,
a lower limit of 0 is assumed.

math.randomseed() Sets a start value for the pseudo random generator. A typical
way to initialize the random generator is randomseed(os.
time()).

112 CHAPTER 5 Scripting

5.5 CHDK commands

In sections 5.3 and 5.4, we looked at the language features of uBasic and
Lua. None of these language features are able to invoke specific camera
functions. For that purpose, the CHDK implementations of uBasic and Lua
provide extra commands enriching both languages. The names of the com-
mands are the same in both languages. The main difference is that in Lua,
parameters are enclosed in parentheses and separated by commas,
whereas the CHDK command is implemented as a function. In uBasic, the
parameters are simply listed behind the command name and separated by
blanks. While values can be returned through parameters in uBasic, Lua
only allows returning values as a function result. For example:

is_key r "right" uBasic

r = is_key("right") Lua

Some commands return Boolean values (true or false). Unlike Lua, uBasic
does not have a Boolean datatype. Those values are therefore returned to
uBasic as 0 (false) or 1 (true).

5.5.1 Button-related commands:

press "button-name" uBasic

press("button-name") Lua

A button is pressed and held down. Normally, this command is followed later by a
release command for the same button name.

release "button-name" uBasic

release("button-name") Lua

A button is released. If the button was not pressed, the command does not have any
effect.

click "button-name" uBasic

click("button-name") Lua

A button is pressed and immediately released.

shoot uBasic

shoot() Lua

Similar to click "shoot_full". In contrast to the click command, the shoot com-
mand will, however, perform all the automatic actions such as focusing, exposure
control, and flash setup before releasing the shutter.

5.5 CHDK commands 113

wait_click t uBasic

wait_click(t) Lua

wait_click() Lua

Waits for a key click. The optional parameter t can specify a time-out value in milli-
seconds. If t is not specified or has the value 0, no time-out will occur.

is_pressed r "button-name" uBasic

r = is_pressed "button-name" uBasic

r = is_pressed("button-name") Lua

Typically used after a wait_click command for determining the button clicked. If
the clicked button matches the specified name, a value of 1 resp. true is returned. By
using the pseudo button name "no_key", it is even possible to check for a time-out.

is_key r "button-name" uBasic

r = is_key "button-name" uBasic

r = is_key("button-name") Lua

Determines if the specified button is pressed. If the pressed button matches the
specified name, a value of 1 resp. true is returned. Typically used standalone without
wait_click.

wheel_right uBasic

wheel_left uBasic

wheel_right() Lua

wheel_left() Lua

Only for PowerShot G7 and SX100IS. Turns the multi-control wheel one stop to the
right or to the left.

r = get_video_button uBasic

r = get_video_button() Lua

Returns 1 resp. true if the camera has a video button (S-series, TX1).

left
macro

set display down
erase

menu

right
flash

up
iso

print

shoot_half shoot_full
zoom_inzoom_out

Figure 5-2

Button names that can be used with

the commands press, release, and

click. Additional buttons on some

cameras are mf (manual focus), video,

timer, expo_corr (exposure correction),

and fe (microphone). On S-series,

print stands for the shortcut button,

erase stands for the func button.

Pseudo button names are no_key for a

time-out and remote for the USB

 remote control.

114 CHAPTER 5 Scripting

5.5.2 Exposure-related commands

As already explained in section 4.2.7, the exposure system of Canon cam-
eras is engineered along the APEX system. All entities (Av, Tv, Ev, Sv, and Bv)
use a logarithmic scale and are divided into 1/3 f-stop. These units are
identified by an index number. Internally, the camera uses an even finer
scale: 32 units per 1/3 f-stop (96 units per f-stop). These finer units can also
be accessed via CHDK functions. Please see Table 5-1 for Tv index and Tv96
numbers and Table 5-2 for Av index and Av96 numbers.

When not using CHDK Overrides (section 4.3.1), the camera will deter-
mine these values from the measured scene brightness and the selected
exposure program. When using CHDK Overrides, however, the user can set
each of those entities to a fixed value. Depending on the camera, exposure
control then works in aperture priority mode or exposure time priority
mode. In the case of cameras without diaphragms, it leaves everything to
the user or to a script; because all of the above entities can be retrieved and
most (except Bv) can be set via script commands, it is possible to organize
exposure control through scripts (section 5.7.4).

Let’s look at the CHDK commands that are available for exposure
control.

Exposure time (Tv)

r = get_nd_present uBasic

r = get_nd_present() Lua

Returns info about the neutral density (ND) filter: 0 = filter present, 1 = no built-in
ND filter, 2 = camera has both a diaphragm and an ND filter.

get_tv x uBasic

x = get_tv() Lua

set_tv x uBasic

set_tv(x) Lua

Retrieves and sets the real exposure time (Tv) index. x = 0 stands for an exposure
time of 1 second. Negative values indicate longer exposure times, positive values indi-
cate shorter times (3 units per f-stop).

get_tv96 x uBasic

x = get_tv96() Lua

set_tv96 x uBasic

set_tv96(x) Lua

Retrieves and sets the internal real Tv value (96 units per f-stop).

get_user_tv_id x uBasic

x = get_user_tv_id() Lua

set_user_tv_id x uBasic

set_user_tv_id(x) Lua

Retrieves and sets the index of the exposure time set by the user (3 units per f-stop).

5.5 CHDK commands 115

get_user_tv96 x uBasic

x = get_user_tv96() Lua

set_user_tv96 x uBasic

set_user_tv96(x) Lua

Retrieves and sets the value of the internal exposure time set by the user (96 units
per f-stop).

 set_tv_rel x uBasic

set_tv_rel(x) Lua

Modifies the current exposure time. A negative x makes the exposure time longer,
a positive x makes it shorter (3 units per f-stop).

set_user_tv_by_id_rel x uBasic

set_user_tv_by_id_rel(x) Lua

Modifies the exposure time set by the user (3 units per f-stop).

set_tv96_direct x uBasic

set_tv96_direct(x) Lua

Sets the exposure time value with 96 units per f-stop.

Index Tv96 Speed Index Tv96 Speed

–12 –384 15" 18 576 1/60

–11 –352 13" 19 608 1/80

–10 –320 10" 20 640 1/100

–9 –288 8" 21 672 1/125

–8 –256 6" 22 704 1/160

–7 –224 5" 23 736 1/200

–6 –192 4" 24 768 1/250

–5 –160 3"2 25 800 1/320

–4 –128 2"5 26 832 1/400

–3 –96 2" 27 864 1/500

–2 –64 1"6 28 896 1/640

–1 –32 1"3 29 928 1/800

0 0 1" 30 960 1/1000

1 32 0"8 31 992 1/1250

2 64 0"6 32 1024 1/1600

Table 5-1

Exposu re index vs. exposure time

116 CHAPTER 5 Scripting

Index Tv96 Speed Index Tv96 Speed

3 96 0"5 33 1056 1/2000

4 128 0"4 34 1088 1/2500

5 160 0"3 35 1120 1/3200

6 192 1/4 36 1152 1/4000

7 224 1/5 37 1184 1/5000

8 256 1/6 38 1216 1/6400

9 288 1/8 39 1248 1/8000

10 320 1/10 40 1280 1/10000

11 352 1/13 41 1312 1/12800

12 384 1/15 42 1344 1/16000

13 416 1/20 43 1376 1/20000

14 448 1/25 44 1408 1/25000

15 480 1/30 45 1440 1/32000

16 512 1/40 46 1472 1/40000

17 544 1/50 47 1504 1/50000

Aperture (Av)
Note: Not surprisingly, setting aperture values on cameras without dia-
phragms has no effect.

get_av x uBasic

x = get_av() Lua

set_av x uBasic

set_av(x) Lua

Retrieves and sets the real aperture (Av) index (Table 5-2). x = 0 stands for an aper-
ture of f/1. Larger values stand for smaller apertures (3 units per f-stop).

get_av96 x uBasic

x = get_av96() Lua

set_av96 x uBasic

set_av96(x) Lua

Retrieves and sets the real aperture internal value (96 units per f-stop).

Table 5-1 Continued

5.5 CHDK commands 117

 get_user_av_id x uBasic

x = get_user_av_id() Lua

set_user_av_by_id x uBasic

set_user_av_by_id(x) Lua

Retrieves and sets the index of the aperture index set by the user (3 units per f-stop).

get_user_av96 x uBasic

x = get_user_av96() Lua

set_user_av96 x uBasic

set_user_av96(x) Lua

Retrieves and sets the internal value of the aperture set by the user (96 units per
f-stop).

set_av_rel x uBasic

set_av_rel(x) Lua

Modifies the real aperture relative to the current aperture. A negative x makes the
aperture wider, a positive x makes it smaller (3 units per f-stop).

set_user_av_by_id_rel x uBasic

set_user_av_by_id_rel(x) Lua

Modifies the aperture set by the user (3 units per f-stop).

set_nd_filter f uBasic

set_nd_filter(f) Lua

Sets the neutral density filter: 0 = off, 1 = in, 2 = out. This command has no effect on
cameras without an ND filter.

Index Av96 Aperture

9 288 f/2.8

10 320 f/3.2

11 352 f/3.5

12 384 f/4.0

13 416 f/4.5

14 448 f/5.0

15 480 f/5.6

16 512 f/6.3

17 544 f/7.1

18 576 f/8.0

Table 5-2

Apertur e index vs. aperture

118 CHAPTER 5 Scripting

Sensor speed (Sv)

get_iso x uBasic

x = get_iso() Lua

set_iso x uBasic

set_iso(x) Lua

Retrieves and sets the ISO speed (Sv) index (Table 5-3). The index values > 0 are
mapped to ISO values of 50 and above. The index values –1 and 0 have a spe-
cial meaning and stand for HiISO and AutoISO.

get_iso_mode x uBasic

x = get_iso_mode() Lua

set_iso_mode x uBasic

set_iso_mode(x) Lua

Retrieves and sets the ISO mode
(–1 = HiISO, 0 = AutoISO, 50, 100, 200, 400, 800).

get_iso_real x uBasic

x = get_iso_real() Lua

set_iso_real x uBasic

set_iso_real(x) Lua

Retrieves and sets the real ISO value. This is the real value used to control the
sensor.

get_iso_market x uBasic

get_iso_market(x) Lua

Retrieves the “marketing” ISO value—the value shown on the display. This
value is higher than the true ISO value (section 4.3.1).

get_sv96 x uBasic

x = get_sv96() Lua

set_sv96 x uBasic

set_sv96(x) Lua

Retrieves and sets the internal sensor speed (Sv) with 96 units per stop.

ISO Index Sv96 ISO mode

–1 – HiISO

0 – AutoISO

1 384 50

2 480 100

3 576 200

4 672 400

Table 5-3

ISO inde x vs. ISO value

5.5 CHDK commands 119

ISO Index Sv96 ISO mode

5 768 800

6 864 1600

7 960 3200

8 1056 6400

Light values (Bv, Ev)

get_bv96 x uBasic

x = get_bv96() Lua

Retrieves the scene brightness (Bv) with 96 units per stop.

get_ev x uBasic

x = get_ev() Lua

set_ev x uBasic

set_ev(x) Lua

Gets and sets the exposure value (Ev) with 96 units per stop.

5.5.3 Focus-related commands

These commands allow reading focus-related values such as subject dis-
tance, depth of field, and so on. They also allow setting the subject distance
to a fixed value and then locking the autofocus system. On cameras with
an explicit manual focus mode, the camera must be switched manually to
that mode before the focus can be set via a script command. On cameras
without an explicit manual focus mode, no action is required.

get_focus_mode x uBasic

x = get_focus_mode uBasic

x = get_focus_mode() Lua

Returns the focus mode: 0 = auto, 1 = manual.

get_focus d uBasic

d = get_focus uBasic

d = get_focus() Lua

set_focus d uBasic

set_focus(d) Lua

Retrieves and sets the focus distance in millimeters. The value of –1 resp. 65535 indi-
cates an infinite distance.

Table 5-3 Continued

120 CHAPTER 5 Scripting

get_dof x uBasic

x = get_dof uBasic

x = get_dof() Lua

Returns the Depth of Field (DOF) in millimeters.

get_far_limit d uBasic

d = get_far_limit uBasic

d = get_far_limit() Lua

get_near_limit d uBasic

d = get_near_limit uBasic

d = get_near_limit() Lua

Sets the far and near limit (in millimeters) of the distance range with acceptable
sharpness. The value of –1 resp. 65535 indicates an infinite distance, but also a
distance outside the current camera setting (macro, normal).

get_hyp_dist d uBasic

d = get_hyp_dist uBasic

d = get_hyp_dist() Lua

Returns the hyperfocal distance in millimeters. The hyperfocal distance is the closest
distance to which the lens can be focused while keeping objects at infinity sharp. All
objects within the range of half of the hyperfocal distance and infinity will be sharp.

set_aflock a uBasic

set_aflock(a) Lua

Sets autofocus lock: 0 = off, 1 = on. Especially useful for time series where refocusing
is not desired. When the AF lock is set, the AF LED is switched off, too.

5.5.4 Zoom-related commands

s = get_zoom_steps uBasic

s = get_zoom_steps() Lua

Returns the maximum number of zoom steps. This may differ among camera models.

get_zoom z uBasic

z = get_zoom uBasic

z = get_zoom() Lua

set_zoom z uBasic

set_zoom(z) Lua

Retrieves and sets the current zoom step.

Note: It is recommended to set the zoom speed explicitly with command set_zoom_
speed (see below) before using the set_zoom command. Improper use of the set_zoom
command can later result in the message “assert failed—game over!” and an imme-
diate camera shutdown.

A safer method to change zoom levels is to apply simulated clicks to the zoom_in and
zoom_out buttons (section 5.5.1).

5.5 CHDK commands 121

set_zoom_rel d uBasic

set_zoom_rel(d) Lua

Sets increments or decrements of the current zoom step.

set_zoom_speed s uBasic

set_zoom_speed(s) Lua

Sets the zoom speed between 5 and 100 percent. This does nothing for A-series
cameras.

5.5.5 Flash-related commands

f = get_flash_mode uBasic

f = get_flash_mode() Lua

Returns the flash mode: 0 = auto, 1 = on, 2 = off.

r = get_flash_ready uBasic

r = get_flash_ready() Lua

Indicates that the flash is ready with a value of 1/true.

5.5.6 Image-related commands

get_quality q uBasic

q = get_quality() Lua

Retrieves and sets the current image quality setting (0 = Superfine, 1 = Fine,
2 = Normal).

get_resolution q uBasic

q = get_resolution() Lua

Retrieves and sets the current image resolution (0 = L, 1 = M1, 2 = M2, 3 = M3, 4 = S,
5 = RAW (on G9), 6 = Postcard, 8 = W).

o = get_orientation_sensor uBasic

o = get_orientation_sensor() Lua

Returns the camera orientation (portrait, landscape) in degrees.

122 CHAPTER 5 Scripting

5.5.7 Time-related commands

sleep t uBasic

sleep(t) Lua

Specifies how long the script will wait in milliseconds. The timer resolution depends
on the camera model and is in the range between 10–30 milliseconds.

s = get_day_seconds uBasic

s = get_day_seconds() Lua

Returns the number of seconds since midnight.

t = get_tick_count uBasic

t = get_tick_count() Lua

Returns the number of milliseconds since the camera was switched on.

t = get_time u uBasic

u = 0 returns second, u = 1 minute, u = 2 hour, u = 3 day, u = 4 month, u = 5 year.

t = get_time(u) Lua

u = ‘s’ returns second, u = ‘m’ minute, u = ‘h’ hour, u = ‘D’ day, u = ‘M’ month,
u = ‘Y’ year.

5.5.8 Display-related commands

x = get_display_mode uBasic

x = get_display_mode() Lua

Returns the display mode: 0 = info, 1 = no info, 2 = off, 3 = electronic viewfinder.

shot_histo_enable x uBasic

shot_histo_enable(x) Lua

Switches the histogram on or off: 0 = off, 1 = on.

get_histo_range s,h,p uBasic

p = get_histo_range(s,h) Lua

Retrieves histogram data from the previous shot. A shadow value (0–1023) is speci-
fied in the variable s; a highlight value (s–1023) is specified in the variable h. The
value returned in variable p is the percent of pixels within that brightness range.
Can be used for sophisticated exposure control.

md_detect_motion ... uBasic

h = md_detect_motion(...) Lua

Detects motion (section 5.7.3)

n = md_get_cell_diff uBasic

n = md_get_cell_diff() Lua

Allows analyzing detected motion in more detail (section 5.7.3).

5.5 CHDK commands 123

playsound s uBasic

playsound(s) Lua

Plays a sound signal. The variable s specifies the signal to be played: 0 = power on,
1 = shutter, 2 = click, 3 = timer, 4 = short, 5 = AF, 6 = error, 7 = long.

Currently, there is no way to play a voice note.

set_backlight b uBasic

set_backlight(b) Lua

Switches the display backlight on or off: 0 = off, 1 = on

set_led a,b,c uBasic

set_led(a,b,c) Lua

Switches the LED on or off. Parameter a identifies the LED: 4 = green, 5 = yellow,
6 = power (not for all cameras), 7 = orange, 8 = blue, 9 = AF light, 10 = timer. Parame-
ter b sets the state: 0 = off, 1 = on. The optional parameter c controls the brightness
(0–200). This works only for the blue LED and not for all cameras.

5.5.9 Image management commands

r = get_raw_nr uBasic

r = get_raw_nr() Lua

set_raw_nr r uBasic

set_raw_nr(r) Lua

Retrieves and sets noise reduction for RAW images (Dark Frame Subtraction): 0 = auto,
1 = off, 2 = on.

r = get_raw uBasic

r = get_raw() Lua

set_raw r uBasic

set_raw(r) Lua

Retrieves and sets the state of the RAW output function: 0 = off, 1 = on.

s = get_disk_size uBasic

s = get_disk_size() Lua

Returns the size of the memory card in kilobytes.

s = get_free_disk_space uBasic

s = get_free_disk_space() Lua

Returns the free space of the memory card in kilobytes.

c = get_exp_count uBasic

c = get_exp_count() Lua

Returns the number of images taken since the camera was switched on.

124 CHAPTER 5 Scripting

c = get_jpg_count uBasic

c = get_jpg_count() Lua

Estimates the number of JPG images that still can be stored on the memory card.

c = get_raw_count uBasic

c = get_raw_count() Lua

Estimates the number of RAW images that still can be stored on the memory card.

set_raw_develop("filename") (Lua only)

Develops the specified RAW file into JPEG on the next shot (section 4.5.5). If the pa-
rameter is omitted or nil, the pending development task is canceled. Development
will be performed under the camera settings at the time of development.

set_curve_state(n) (Lua only)

Sets the development curve state for post-processing (section 4.3.8): 0 = None,
1 = Custom, 2 = +1EV, 3 = +2EV, 4 = AutoDR.

raw_merge_start(operation) (Lua only)

Starts a merging process for RAW files (section 4.5.6). Operation: 0 = sum, 1 = average.

The following raw_merge_add() commands will contribute to the result.

raw_merge_add("filename") (Lua only)

Adds a single picture to a merged RAW image. Typically, this technique is used to re-
duce noise by averaging multiple shots (section 4.5.6).

raw_merge_end() (LUA only)

Completes the merge operation.

5.5.10 Camera state

x = get_platform_id uBasic

x = get_platform_id() Lua

Returns a numeric value identifying the camera model.

b = get_buildinfo() (Lua only)

Returns a table with information about the CHDK build. Table fields can be addressed
with the following keys: platform, platsub, version, build_number, build_date,
build_time.

x = autostarted uBasic

x = autostarted() Lua

Assigns a value of 1 resp. true to variable x if the script was started using the Auto-
start function (section 5.1).

5.5 CHDK commands 125

a = get_autostart uBasic

a = get_autostart() Lua

set_autostart a uBasic

set_autostart(a) Lua

Retrieves or sets the state of the autostart function (section 5.1).

0 = autostart off. The user always starts scripts. 1 = autostart on. The next time
the camera is switched on, the previously selected script will be executed.

2 = autostart once. The next time the camera is switched on, the previously
selected script will be executed. The autostart state is then set back to 0.

x = random l,u uBasic

x = random(l,u) Lua

Returns a random value within a range of l to u.

m = get_mode uBasic

Returns the camera mode: 0 = recording, 1 = playback, 2 = video.

rec,vid,mode = get_mode() Lua

Returns the camera mode:
rec: true = recording, false = playback
vid: true = video, false = photo
mode: binary value representing the CHDK shooting mode number (section 5.6).

r = set_capture_mode(i) Lua

Sets the shooting mode. Parameter i specifies the CHDK shooting mode number.
true is returned on success, false otherwise. See also section 5.5.12 for high-level
access.

is_capture_mode_valid(i) Lua

Returns true if the parameter i is a valid CHDK shooting mode number (section 5.6)

m = get_drive_mode uBasic

m = get_drive_mode() Lua

Returns the camera’s drive mode: 0 = single shot, 1 = series, > 1 = timer.

m = get_IS_mode uBasic

m = get_IS_mode() Lua

Returns the mode of the image stabilizer (IS): 0 = continuous, 1 = when shooting,
2 = panning, 3 = off.

m = get_movie_status uBasic

m = get_movie_status() Lua

Returns the current status of the video function: 0 = stop, 1 = pause, 4 = record,
5 = save.

set_movie_status m uBasic

set_movie_status(m) Lua

Sets the current status of the video function: 1 = pause, 2 = restart, 3 = stop.

126 CHAPTER 5 Scripting

s = get_shooting uBasic

s = get_shooting() Lua

Returns 1 resp. true if the camera is currently shooting or has prepared for shooting
and is ready to shoot.

x = get_propset uBasic

x = get_propset() Lua

Returns the type of operating system: 1 = VxWorks, 2 = DryOS.

v = get_prop p uBasic

v = get_prop(p) Lua

set_prop p,v uBasic

set_prop(p,v) Lua

Retrieves and sets properties (section 5.6).

b = get_vbatt uBasic

b = get_vbatt() Lua

Returns the battery voltage into variable b (in milliVolts).

t = get_temperature p uBasic

t = get_temperature(p) Lua

Returns a temperature in degrees Celsius. The variable p specifies the probe:
0 = optics, 1 = CCD, 2 = battery.

u = get_usb_power uBasic

u = get_usb_power() Lua

Sets variable u to a value > 0 if the camera detects a signal on the USB V+ pin. The
returned value is the duration of the signal in units of 10 milliseconds. Typically, this
command is used to implement advanced remote control functions (section 5.7.5).

exit_alt uBasic

exit_alt() Lua

Leaves the CHDK-specific <ALT>-mode (chapter 4). Please note that leaving the <ALT>-
mode interrupts script execution. The script execution is resumed when the camera
returns to <ALT>-mode.

shut_down uBasic

shut_down() Lua

The camera is switched off as soon as possible.

5.5.11 Low-level commands (Lua only)

value = peek(address)

Fetches memory content from the specified address.

Note: If the address is outside the address range of the camera, the operating system
will crash!

5.5 CHDK commands 127

status = poke(address,value)

Writes the specified value into memory at the specified address.

Warning! Make sure you know exactly what you are doing. Writing wrong memory
content could crash the operating system or even damage your camera!

num = get_flash_params_count()

Returns the number of parameters in flash memory. Canon cameras feature a nonvol-
atile flash memory to store data even when the battery is removed. The parameters in
that memory are numbered starting from zero.

str,num = get_parameter_data(id)

Returns the value of a specified flash memory parameter. id identifies the parameter.
The meaning of IDs may vary from platform to platform and is ongoing work. You can
find a listing at http://chdk.wikia.com/wiki/Params.

str returns the parameter value as a string, which may contain nonprintable control
characters.

num returns the parameter value as a number, provided the parameter length is not
longer than 4 bytes. Otherwise nil is returned.

bitand(x,y), bitor(x,y), bitxor(x,y), bitshl(x,y), bitshri(x,y),
bishru(x,y), bitnot(x)

These commands perform bitwise operations on integers: AND, OR, XOR, SHIFT LEFT,
SHIFT RIGHT, SHIFT RIGHT UNSIGNED, NEGATION.

5.5.12 The library capmode.lua (Lua only)

The library capmode.lua is contained in the full CHDK distribution and sim-
plifies access to Canon capture modes such as AUTO, P, TV, AV, M, PORTRAIT,
NIGHT, LANDSCAPE, ..., EASY, SCN_DIGITAL_MACRO, and SCN_STITCH. To use
these commands, you must load the library with the following instruction:

capmode = require("capmode")

capmode.mode_to_name

Lua table that maps CHDK shooting mode numbers to mode names.

capmode.name_to_mode

Lua table that maps mode names to CHDK shooting mode numbers.

index = capmode.get()

Returns the CHDK shooting mode number (section 5.6). Returns 0 if the camera is
in Replay mode.

name = capmode.get_name()

Returns the current shooting mode name (section 5.6). Returns PLAY if the camera
is in Replay mode, UNKNOWN if the shooting mode is not known.

128 CHAPTER 5 Scripting

id = capmode.get_canon()

Returns the current Canon shooting mode ID (section 5.6). The values are ANDed
bitwise with 0xFFFF so that negative values are returned as 65536-id.

r = capmode.set(modeid)

Sets the shooting mode specified in modeid. This can be a CHDK shooting mode
number or a mode name. Returns true on success.

index = capmode.valid(modeid)

Returns the CHDK shooting mode number derived from modeid. It can be a CHDK
shooting mode number or a mode name. nil is returned if modeid is not a valid
shooting mode.

5.6 Property Cases

Both uBasic and Lua scripts feature commands for accessing so-called
Property Cases. These are pieces of data used by the camera’s operating
system. Each property case is identified by a property ID (a number > = 0).

 uBasic: get_prop id

Lua: get_prop(id)

and

uBasic: set_prop id value

Lua: set_prop(id, value)

Unfortunately, the property IDs differ between the VxWorks and DryOS
operating systems (section 2.2), as you can see in the table below. In conse-
quence, a script accessing properties and developed for Digic II cameras
will not run on most Digic III and all Digic IV cameras, and vice versa. This is
okay if you write a script for your own camera, but if you plan to publish
your script in the CHDK community you should identify which cameras are
supported.

If you want to make your script as widely applicable as possible, you
should make it independent from the actual operating system. Under
uBasic, you can use the command get_propset (section 5.5.10) to find out
the operating system where your script is running. For example:

x = get_propset

if x = 1 then

 s = get_prop 205

else

 s = get_prop 206

endif

retrieves the shooting state of the camera under both operating systems.

5.6 Property Cases 129

A more elegant solution to this problem exists for the most important
property cases under Lua. Your CHDK installation should already contain a
library propcase.lua in folder /CHDK/LUALIB. This library maps symbolic
names to property IDs and thus abstracts from the underlying operating
system. The above query can be reformulated as:

props = require "propcase"

s = get_prop(props.SHOOTING)

You will find that many property cases shown in the table below are, in
fact, covered by commands listed in section 5.5, so it’s rarely necessary to
access properties directly. The query shown above can be expressed more
simply as:

s = get_shooting rem uBasic

s = get_shooting() -- Lua

Not all of the property IDs and their values have been decoded yet—this is
an ongoing community effort. In addition, not all findings have been veri-
fied for all camera types. So, the following table must be treated with some
caution.

Vx Works DryOS Lua Description

0

236

SHOOTING_MODE Shooting mode dial position

18 = video (11)

49

50

SHOOTING_MODE Shooting mode dial position

We list here only the most common shooting modes. A complete list of
shooting modes is found in library modelist.lua in folder CHDK/LUALIB/.
Some of the Canon shooting mode numbers (in front of the equality sign) dif-
fer from camera to camera. The latest findings are listed on http://chdk.wikia.
com/wiki/Mode_dial_propcase_values.

The values in parenthesis are the CHDK shooting mode numbers.

–32768 = AUTO (1)

–32764 = P (2)

–32765 = Tv (3)

–32766 = Av (4)

–32767 = M (5)

–32755 = PORTRAIT (6)

–32757 = NIGHT (7)

–32756 = LANDSCAPE (8)

2597 = VIDEO_STD (640/30fps) (9)

2598 = VIDEO_SPEED (320/60fps) (10)

2599 = VIDEO_COMPACT (160/15fps) (11)

–32246 = Stitch Assist

–32248 = Digital Macro

130 CHAPTER 5 Scripting

Vx Works DryOS Lua Description

49

50

SHOOTING_MODE Shooting mode dial position

We list here only the most common shooting modes. A complete list of
shooting modes is found in library modelist.lua in folder CHDK/LUALIB/.
Some of the Canon shooting mode numbers (in front of the equality sign) dif-
fer from camera to camera. The latest findings are listed on http://chdk.wikia.
com/wiki/Mode_dial_propcase_values.

The values in parenthesis are the CHDK shooting mode numbers.

–32768 = AUTO (1)

–32764 = P (2)

–32765 = Tv (3)

–32766 = Av (4)

–32767 = M (5)

–32755 = PORTRAIT (6)

–32757 = NIGHT (7)

–32756 = LANDSCAPE (8)

2597 = VIDEO_STD (640/30fps) (9)

2598 = VIDEO_SPEED (320/60fps) (10)

2599 = VIDEO_COMPACT (160/15fps) (11)

–32246 = Stitch Assist

–32248 = Digital Macro

1 Photo effect

2 225 Sharpness for custom MyColors setting

3 55 Saturation for custom MyColors setting

4 59 Contrast for custom MyColors setting

227 Long time exposure

1 in “Night snapshot” scene mode or when exposure time is set to > = 1s,

0 otherwise.

5 268 White balance
0 = Auto
1 = Daylight
2 = Cloudy
3 = Tungsten
4 = Fluorescent
5 = Fluorescent H
6 = Flash
7 = Custom

6 102 DRIVE_MODE Drive mode
0 = Single
1 = Continuous
>1 = Timer

5.6 Property Cases 131

Vx Works DryOS Lua Description

8 Hi-speed continuous mode
1 = OFF
0 = ON

9 155 METERING_MODE Metering mode
0 = Eval
1 = Spot
2 = Center

11 Macro
0 = Normal
1 = Macro
2 = Super Macro

6 Focus mode
0 = Normal
1 = Macro
3 = Infinity
4 = Manual
5 = Super Macro

12 133 FOCUS_MODE Manual focus mode
0 = OFF
1 = ON

8 AF frame
0 = AiAF
1 = Center
2 = FaceDetect

13 12 AF mode
0 = Single
1 = Continuous

14 224 Delay of self-timer (msec)

15 121 FLASH_ADJUST_MODE Flash adjust mode
0 = Auto
1 = Manual

16 143 FLASH_MODE Flash mode
0 = Auto
1 = ON
2 = OFF

111 External flash state
0 = Absent
1 = Present and turned on
2 = Present and turned off

18 213 Red-eye mode
0 = OFF
1 = ON

132 CHAPTER 5 Scripting

Vx Works DryOS Lua Description

19 Flash slow sync
0 = OFF
1 = ON

20 64 FLASH_SYNC_CURTAIN Flash sync curtain
0 = First
1 = Second

21 149 ISO_MODE ISO value
0 = ISO-AUTO
1 = ISO-HI
> 1 = actual ISO

23 57 QUALITY Image quality
0 = Superfine
1 = Fine
2 = Normal

24 218 RESOLUTION Image resolution
0 = L
1 = M1
2 = M2
3 = M3
4 = S
5 = RAW (on G9)
6 = Postcard
8 = W

25
26

107
207

EV_CORRECTION_1
EV_CORRECTION_2

 EV correction
96 units per stop. When setting EV correction, both properties must be set.
A value larger than ±2 f-stops (192 units) is possible.

28 127 Flash correction
96 units per f-stop, if Flash adjust mode = Auto.

29 141 FLASH_MANUAL_OUTPUT Manual flash output
0 = Low
1 = Medium
2 = Full if Flash adjust mode = Manual

32 4 Exposure bracket range
96 units per stop. A value larger than ±2 f-stops (192 units) is possible.

34 113 Focus bracket range
2 = Smallest
1 = Medium
0 = Largest

36 29 BRACKET_MODE Bracket mode
0 = NONE
1 = Exposure
2 = Focus

5.6 Property Cases 133

Vx Works DryOS Lua Description

37 219 ORIENTATION_SENSOR Orientation sensor
0 = Normal
270 = Left
90 = Right

21 Auto rotate
0 = OFF
1 = ON

220 Safety FE
0 = OFF
1 = ON

277 Safety MF
0 = OFF
1 = ON

39 26 USER_AV User-selected Av
96 units per f-stop, 0 = f/1, positive = smaller, negative = wider.

40 264 USER_TV User-selected Tv
96 units per f-stop, 0 = 1 sec, positive = shorter, negative = longer.

52 233 Stitch mode
0 = Left to right
1 = Right to left
2 = Bottom to top
3 = Top to bottom
4 = Top left > top right > bottom left > bottom right

57 249 DIGITAL_ZOOM_POSITION Digital zoom steps
0 = NONE
>0 = number of steps. Digital zoom steps are camera-dependent.

58 94 DIGITAL_ZOOM_STATE Digital zoom state
0 = OFF
1 = ON/default
Other values are camera-dependent.

95 DIGITAL_ZOOM_POSITION Digital zoom position
In digital zoom steps

63 5 AF light
1 = ON
2 = OFF

65 245
252

SUBJECT_DIST1 Focus distance
In millimeters

66 65 SUBJECT_DIST2 Same

254 –1 indicates infinity

134 CHAPTER 5 Scripting

Vx Works DryOS Lua Description

67 115 Focus OK, ready to shoot
1 = Yes
0 = No

18 Number of green AF boxes after half-press
0 indicates a focusing problem.

68 23 AV Effective Av
96 units per f-stop

69 262 TV Effective Tv
96 units per f-stop

70 79 DELTA_SV

71 34 BV Scene brightness value (Bv)
96 units per f-stop

72 246 SV_MARKET User-selected Sv
96 units per f-stop

73 247 SV Effective Sv
96 units per f-stop

74 AE lock
1 = ON
0 = OFF

76 103 OVEREXPOSURE

77 24
25

MIN_AV Minimal available Av (max. Aperture)

78 122
???

 Flash fired
0 = Not fired
1 = Fired

79 122
???

FLASH_FIRE Fire flash
0 = do not fire
1= fire

99 195 OPTICAL_ZOOM_POSITION Zoom step
Camera-dependent

100 269 WB_ADJ Color temperature
1 unit = 6 °K

126 166 Video frames per second (FPS)

127 169 Video x resolution
0 = 160
1 = 320
2 = 640

5.6 Property Cases 135

Vx Works DryOS Lua Description

128 Video y resolution
0 = 120
1 = 240
2 = 480

170 Video play mode
0 = LP
1 = SP

165 Time-lapse movie shoot interval
In milliseconds

177 Intervalometer
0 = Intervalometer not active
>0 = Number of current shots in sequence

178 117 File numbering
0 = Continuous
1 = Auto Reset

181 105 DISPLAY_MODE Display mode in record mode
0 = Show info
1 = Do not show info
2 = LCD off
3 = EVF

212 Review info
0 = Off
2 = Detailed
3 = Focus check

184 Slideshow mode
0 = Do not repeat
1 = Repeat

185 Slide duration
1 = 3s, 2 = 4s, 3 = 5s, 4 = 6s, 5 = 7s, 6 = 8s, 7 = 9s, 8 = 10s, 9 = 15s, 10 = 30s

186 Print settings/DPOF mode
1 = Standard
2 = Overview
3 = Both

187 Print settings/DPOF date
0 = No date
1 = Date

188 Print settings/DPOF filenumber
0 = No filenumber
1 = Filenumber

190 66 Postcard mode date printing
0 = No date
1 = Date
2 = Date & time

136 CHAPTER 5 Scripting

Vx Works DryOS Lua Description

192 AF frame/flexizone x position

193 3 Autofocus lock
0 = Not active
1 = Active

194 92 Digital zoom area
Used part of sensor with digital zoom. Can be used to determine digital zoom
ratio.

196 61 Language setting (L) and video output mode (V)
256*L + V

V:
1 = NTSC
2 = PAL

L: (VxWorks/DryOS)
0/0 = English
1/1 = German
2/2 = French
3/3 = Dutch
4/4 = Danish
5/5 = Finnish
6/6 = Italian
7/7 = Norwegian
–/8 = Ukrainian
8/9 = Swedish
9/10 = Spanish
10/11 = Simplified Chinese
11/12 = Russian
12/13 = Portuguese
13/14 = Greek
14/15 = Polish
15/16 = Czech
16/17 = Hungarian
17/18 = Turkish
18/19 = Traditional Chinese
19/20 = Korean
20/21 = Thai
21/22 = Arabic
–/23 = Romanian
22/24 = Japanese

200 Selected movie mode

205 206 SHOOTING Ready to shoot
Changes to 1 when camera is ready to shoot (focus and exposure set);
changes back to 0 when shutter closes.

5.6 Property Cases 137

Vx Works DryOS Lua Description

206 184 “MyColors” mode
0 = OFF
1 = Vivid
2 = Neutral
3 = B&W
4 = Sepia
5 = Positive film
6 = Lighter skin tone
7 = Darker skin tone
8 = Vivid red
9 = Vivid green
10 = Vivid Blue
11 = Custom

207
208
209
210

Red, green, blue, skin tone for the “Custom” MyColors settting.
A larger value means darker.

218 Custom timer continuous
Number of shots to be taken

219 223 Self-timer setting
0 = 2 sec
1 = 10 sec
2 = Custom continuous

63 Number of continuous shots taken last time

221 208 IS_FLASH_READY Flash ready
0 = NO
1 = YES

223 Microphone recording frequency
0 = 11.025 kHz
1 = 22.050 kHz
2 = 44.100 kHz

227 Microphone level
1–5 = low - high

228 Microphone wind protection
0 = OFF
1 = ON

229 145 IS_MODE Image stabilizer (IS)
0 = Continuous
1 = Shoot only
2 = Panning
3 = Off

138 CHAPTER 5 Scripting

Vx Works DryOS Lua Description

230 60 Converter
Indicates whether a wide angle or teleconverter is mounted.
0 = NONE
1 = Wide
2 = Tele

91 Digital teleconverter mode
Indicates whether a digital teleconverter is active.
0 = OFF
>0 = ON

280 RAW+JPG
0 = OFF
1 = ON

290 iContrast setting
0 = OFF
1 = ON

293 Servo AF
0 = OFF
1 = ON

294 ASPECT_RATIO Widescreen
Indicates whether the camera is switched to the 16:9 aspect ratio.
0 = OFF
1 = ON

296 ND filter
Indicates whether the ND filter is active.
0 = OFF
1 = ON

Not every entry in the table is valid for all CHDK-supported cameras. You
should check specific property cases for your camera before using them.
You can do this with the help of the script propdump.lua, which you will
find on the book CD. Execute the script once (section 5.1) to create a first
Property Dump. Then modify the camera setting and execute the script a
second time. By setting parameter I, you can compare the second property
dump with the first one. The differences between them will be displayed
on the screen and give you a hint as to which property relates to the
changed camera setting.

5.7 Example scripts 139

PRESENTATION OF NEGATIVE VALUES IN UBASIC

When reading properties with the uBasic command get_prop, negative val-

ues are represented as so-called 2-complements. Depending on the storage

size of the property (1 byte or 2 byte), either the value 216+x or 28+x is dis-

played.

Example: A value of 65500 is displayed. The real value is –36:

216+(–36) = 65536–36 = 65500.

In the table we have printed the property cases that can be modified by a
script in bold letters. All other properties are read-only, or modifying them
has not yet been tested. In general, however, it is better to change the
camera settings by simulating key presses (section 5.1). Changing camera
settings by setting property values can be sometimes problematic because
only part of the camera may be affected by a specific property case. For in-
stance, a property case may influence the camera optics while leaving the
user interface untouched.

This example is a property-based version of the script flashoff.lua
from section 5.1:

-- flashof2.lua by Berthold Daum

--[[

@title Flash off

]]

props = require "propcase"

set_prop(props.SHOOTING,2)

exit_alt()

Here, the flash is switched off by assigning a value of 2 to property 143
(property 16 on DIGIC II). The script works all right—the flash is indeed
switched off. But the display does not reflect the new state. It still indicates
that the flash is in AUTO mode. When using the camera in unattended
mode (e.g., in an RC-controlled vehicle), nobody cares. But personally, I pre-
fer a display that truly reflects the state of the camera, so I would choose
the original version of the script as shown in section 5.1.

5.7 Example scripts

Scripting is a popular topic on the CHDK web pages. Most of the scripts
deal with timers, bracketing, or motion detection. Timers are typically used
for operating the camera autonomously (e.g., from a kite or a balloon) or

140 CHAPTER 5 Scripting

for creating time-lapse series, very often time-lapse movies. Bracketing
scripts are used for creating High Dynamic Range (HDR) photos or for creat-
ing images with extended depth of field via focus stacks. Finally, motion
detection is used for all kinds of purposes: lightning photography, surveil-
lance, wildlife, and more. For example, I found it good fun to set up the
camera at a party, load a motion detection script, and let the camera do the
work. The resulting pictures are quite different from pictures taken manu-
ally: full of action and often hilarious.

In the following sections, we will present some scripts from these areas.
All of them aim to be as independent of platform and camera model as
possible, but you should first test them with your own camera to see if they
are suitable. The main reason for presenting these scripts is so that you can
learn something about scripting. After playing with the scripts found here
or on http://chdk.wikia.com/wiki/ UBASIC/Scripts, you may be able to cre-
ate your own scripts and draw even more benefit from the CHDK.

5.7.1 Time machines

Why do you need a script shooting a series of photos? Doesn’t your camera
have a configurable series function? Of course it has.

But you probably have noticed that this function has its limitations.
First, the number of shots is limited to 10. You may have an initial delay
before the series begins but no delay between pictures, and exposure and
focus are only measured once and not for each image. The latter can be a
problem if the series function allows for long series with customizable de-
lays. For example, during a long series, the illumination may change due to
the sunset or a cloud hiding the sun.

There are quite a few reasons to look at time-lapse scripts—and in fact,
most of the CHDK scripts available on the web are for time-lapse purposes.

We will present two scripts here. One simply takes a predefined number
of shots with a predefined delay between each shot. It does this very pre-
cisely, even taking different shutter and image processing times into ac-
count. So, it will even keep to the schedule when exposure times become
quite long. The other reads a predefined schedule from a text file and fires
the camera at precisely the defined points in time. Such schedules are most
useful for unmanned operations like balloon or kite photography, but they
need to be prepared on a PC because the schedule must be supplied as a
text file.

Both scripts are written in Lua because it is easier to get a precise timing
in that language. A third script (also written in Lua) deals only indirectly
with time series; it is used to rename images. That might be necessary for
some time-lapse moviemakers. Here we also have the opportunity to try
out Lua for file management.

5.7 Example scripts 141

Accurate time lapse
The Accurate Time Lapse script first defines a few parameters. n specifies
the total number of shots to be taken. The delay between the shots is
computed as (((m*60)+s)*10+t)*100 from the parameters m (minutes), s
(seconds), and t (tenth of a second). The result is the total delay in millisec-
onds.

Two more parameters allow control of focusing and display. If parame-
ter f is set to 1, the camera will focus only once and then leave the focus
unchanged. Otherwise, the autofocus process will be performed before
each shot. If parameter d is set to 0, the display is darkened to save battery
life.

--[[

@title Accurate time lapse

@param n Number of frames

@default n 10

@param m Delay min

@default m 5

@param s Delay sec

@default s 0

@param t Delay 1/10 sec

@default t 0

@param f Focus 0 Each 1 Start

@default f 0

@param d Display 0 off 1 on

@default d 1

--]]

In Lua, functions must be defined before they are invoked. So, we start with
function definition first. Because there is no built-in command to set the
display mode, we need to select it by simulated key presses. Since we cannot
be sure about the initial state, we simply check after each key press to see
whether we have reached the desired state. This is done with the function
get_prop() that retrieves the respective property case (section 5.6). Instead
of a numeric property ID, we use the constant props.DISPLAY_MODE. The
 table props is defined in library propcase.lua, which is part of the CHDK
installation and which we have loaded with require("propcase"). The
advantage of this technique is that it is platform-independent. The numeric
Property Case IDs, in contrast, are different for each operating system. The
sleep() function pauses the script for 100 msec to give the camera some
time to do its work.

The definition of function idiv() and the pcall() expression provide
compatibility with the PC-based debug environment (section 5.8). idiv()
performs an integer division. Under the CHDK, the results of idiv() are
identical to those obtained with the operator /; but in a floating-point

142 CHAPTER 5 Scripting

environment such as a PC, the operator / denotes a floating-point division.
Because an integer division is what we want, and because it is more conve-
nient to debug scripts on a PC, we use idiv() instead of / throughout the
script.

function idiv(a,b)

 return (a-(a % b))/b

end

pcall(function()

 require("chdklib")

 end

)

props = require("propcase")

function set_display_mode(mode)

 while get_prop(

 props.DISPLAY_MODE) ~= mode do

 click("display")

 sleep(100)

 end

end

The implementation of the next function, sleep_until(), could be trivial:
simply calling the sleep() command and specifying the interval between
now and the target time. But here, we want to do a bit more and allow the
user to abort the script with the SET key. By doing so, we have the ability to
restore the focus and display settings, which we cannot do if the user
aborts with the shutter button.

Therefore, we use the command wait_click() instead and specify the
interval (sleep_time) as a timeout. When this timeout happens, function
is_pressed() returns “no_key”. We then return false because the user
does not want to abort. If the user clicks the SET key, we return true. For any
other key, we loop around and wait for the remaining time.

function sleep_until(ticks)

 repeat

 local sleep_time =

 ticks - get_tick_count()

 if sleep_time <= 0 then

 return false

 end

 wait_click(sleep_time)

 if is_pressed("set") then

 return true

 end

 until is_pressed("no_key")

 return false

end

5.7 Example scripts 143

The function focus() is called if the user wants to focus just once at the
beginning of the series. In this case, the focusing is performed by half-
pressing the shutter button. In the following repeat- loop we wait until the
camera becomes ready to shoot. The sleep(1) command in that loop is
recommended to give the camera processor some time to breathe. In uBasic
that would not be necessary because the uBasic interpreter automatically
waits 10 msec after each line of code. This is not the case for Lua—probably
the main reason why Lua scripts are so much faster.

After focusing has finished, we lock the autofocus system and release
the shutter button. The camera will not try to refocus until the lock is re-
leased.

function focus()

 press("shoot_half")

 repeat

 sleep(1)

 until get_shooting()

 set_aflock(1)

 release("shoot_half")

end

Function tohms() converts milliseconds into the more readable format
h:m:s. It does so by dividing the seconds subsequently by 60 and keeping
the remainders. Instead of using the operator / for division, we use the
function idiv() defined above:

function tohms(ticks)

 local ts =

 idiv((ticks + 50), 100)

 local t = ts % 10

 ts = idiv(ts, 10)

 local s = ts % 60

 ts = idiv(ts, 60)

 local m = ts % 60

 local h = idiv(ts, 60)

 return h, m, s, t

end

All necessary functions are now implemented, and we can begin with the
main program. First, we print a short note to the user describing how to
abort the script. We then begin checking the parameters for valid values. If
a value is invalid, the parameter is reset to its default value.

We can compute the interval between two shots (delay) as discussed
above:

144 CHAPTER 5 Scripting

print "Press SET to exit"

-- Check parameters

if n <= 0 then n = 10 end

if m < 0 then m = 5 end

if s < 0 then s = 0 end

if t < 0 then t = 0 end

-- Compute delay value

delay = (((m*60)+s)*10+t)*100

If focusing is only desired at the beginning of the series, we invoke function
focus() now. It performs the focusing and then locks the focusing system.

Then we save the current display mode in order to restore it at the end
of the script. If a dark display is desired, we use function set_display_
mode(2) to switch the display off.

if f > 0 then focus() end

old_display_mode =

 get_prop(props.DISPLAY_MODE)

if d <= 0 then

 set_display_mode(2)

end

Now we can initialize the main loop. We get the start time in milliseconds
(since camera start) and initialize the variable next_event with that value.

Within the loop we shoot an image, then increment the variable next_
event with the computed delay. If the display is active, we print a log entry
to inform the user about the progress. To do so, we use the function
format() from the Lua string library (section 5.4.13). Then we sleep until
the time computed in next_event. If the user has clicked FUNC/SET, we
break the loop and finish the script. This, of course, also happens when the
frame counter has reached the predefined number of shots.

Finally, the display mode is reset to its original state and the AF lock is
released, just in case it was locked by the focus() function.

start_ticks = get_tick_count()

next_event = start_ticks

for frame = 1, n, 1 do

 shoot()

 next_event = next_event + delay

 if d>0 then

 h, m, s, t =

 tohms(next_event-start_ticks)

 print(string.format(

5.7 Example scripts 145

 "%u of %u, MET %u:%u:%u.%u",

 frame, n, h, m, s, t))

 end

 if sleep_until(next_event) then

 print "Aborted"

 break

 end

end

-- restore display mode

set_display_mode(old_display_mode)

-- restore AF lock mode

set_aflock(0)

This script is very precise because it always computes the time of the next
event and determines the sleep time as the difference between the next
event and the current time. Even long exposure times do not disturb the
script’s timing—provided, of course, the exposure times don’t exceed the
defined delays between shots.

 Time-lapse movies
Time-lapse scripts are often used to create time-lapse movies. Of course,
your camera probably offers a built-in function to create time-lapse movies,
but it is rather limited. Let’s see what’s possible with a time-lapse script.

First, with a script you don’t work in video mode but in photo mode.
This allows you to step up the image resolution. High Definition (HD)
movies (1600x1200 pixels) become possible, and wide-screen movies
(16:9) are no problem. When creating a time-lapse movie in this way, you
should shoot in JPEG mode (not RAW). RAW files take up too much space,
and the programs used for composing the movie expect JPEG.

Select an image size large enough to cover the output format. Output
for normal television (NTSC) needs a resolution of at least 720 x 480 pixels,
so the M3 image size (1600x1200) should be more than enough. The same
image size is also sufficient for 4:3 High Definition (HD) movies. However, if
you plan to create a wide-screen movie (16:9), you should use image size W
instead. Wide-screen HD requires at least 1920x1080 pixels, so image size W
is more than enough. In addition, your display is switched to the wide-
screen format when using image size W.

Both formats (M3 and W) offer you different compression ratios. I prefer
to start at medium resolution. The compression ratio “Superfine” is hardly
necessary for a movie. With a 4 GB card, you can expect the following play
times at 30 fps:

146 CHAPTER 5 Scripting

M3 W

Superfine 119 sec 48 sec

Medium 202 sec 78 sec

Low 406 sec 156 sec

When shooting at intervals of one minute, a 4 GB card can cover a mini-
mum of one day and a maximum of 8 days 11 hours. An external power
supply is highly recommended for such a task. Changing batteries during a
shooting session can easily ruin the whole set-up.

By the way, long time-lapse sessions can wear out your camera. A movie
with five minutes’ playtime at 30 fps consists of 9,000 single shots. The
fewer moving parts your camera has, the better. (Using a DSLR with its
complex mechanics and mechanical aperture is not a good idea.) A small
compact camera with an electronic shutter and a neutral density filter is
definitely preferred.

Also, be careful about the Digital Zoom. When shooting HD movies, you
should avoid the Digital Zoom altogether or only use it up to approximately
a factor of 2. Otherwise, you can use any camera feature and any CHDK
feature that you would use when shooting manually. You can allow the
camera to determine the exposure and focus for each new shot, or you can
use Overrides (section 4.3.1) to set fixed exposure values and/or a fixed
subject distance. You can use extreme exposure times (sections 4.3.5 and
4.3.6). You can even use curves (section 4.3.8) to compress contrast or do
some wild, experimental stuff. You can bracket every shot, later applying
 tone mapping to each exposure group to create an HDR movie. There are,
in fact, some specialized scripts for that task in the community, and we will
discuss this technique in section 6.3.

After a time-lapse session, you will end up with a series of photos—not
with a video. Additional post-processing steps are required to convert the
photos into a movie:

 f First, some resampling might be required, depending on the selected
image size during shooting and the target output format. You will need
a tool that is able to downsize images in a batch process. There are a
number of tools for this purpose. If you have Photoshop, you can use
Actions. Similarly, in Paint Shop Pro you would use Scripts, and in Picture
Window you would use Workflow. Free tools with batch facilities in-
clude IrfanView, Picasa, and the command-line tool Image Magick. On
the Mac, you can create an Automator action.

 f Finally, you must feed the images into a time-lapse converter. Suitable
programs are Quicktime Pro, iMovie (Mac), MovieSalsa, MakeAVI (free),

5.7 Example scripts 147

PhotoLapse (free), JPGVideo (free), or the free command-line tool
Ffmpeg. The last one is a cross-platform tool that requires the photos to
be numbered sequentially starting at 1 (e.g., frame_1.jpg, frame_2.
jpg, frame_3.jpg, ...). IrfanView allows you to do batch renaming of
photos. Alternatively, you could easily rename the images within the
camera before transferring them to the PC. The following Lua script is
all you need.

Renaming files
The following script can be used for renaming files. It uses “FRAME_” as a
filename prefix and starts numbering at 1. However, this can be easily
changed.

--[[

@title Rename files

@param s start value

@default s 1

--]]

root = "A/DCIM"

prefix = "FRAME_"

suffix = ".JPG"

pcall(function()

 require("chdklib")

 root = "TEST"

 end

)

The header defines the script title and a parameter for the start value of
the sequence number. The directory root is set at A/DCIM, where the sub-
folders for the images are located. The following pcall() expression is
used for testing the script on a PC (section 5.8), where we also use a differ-
ent root directory.

The function renameFile() does the actual renaming with the help of
the operating system function os.rename(). But before we do so, we check
to see whether the file to be renamed is actually a file (and not a folder). We
also check to see whether a file with the new name already exists. In that
case, we throw an error message because giving a file the name of an al-
ready existing file can cause unexpected results. Function os.stat() is
used to do all that. It returns status information about the specified file
(section 5.4.13).

148 CHAPTER 5 Scripting

In case of success, we increment the image counter s.

 function renameFile(path, file)

 oldname = path..file

 local t = os.stat(oldname)

 if t["is_file"] then

 newname =

 path..prefix..s..suffix

 t = os.stat(newname)

 if t then

 error(

 oldname.." already exists")

 end

 r, msg = os.rename(

 oldname, newname)

 if not r then

 error(msg)

 end

 s = s + 1

 end

 end

The following code is the main script part. It first lets the user select a
subfolder of DCIM/. It does so by fetching the members of the root directory
and prompting the user with the subfolder names. The user can navigate
with the LEFT and RIGHT buttons to the subfolder whose files shall be re-
named. The user selects the subfolder by pressing FUNC/SET. The button
DISP is used to abort.

-- folder selection

 files, msg =

 os.listdir(root,false)

 if not files then

 error(msg)

 elseif not files[1] then

 error("No image folders")

 end

 i = 1

 while true do

 cls()

 print("Press SET to select")

 print("LEFT, RIGHT to scroll")

 print("DISP to abort")

 print("Folder: "..files[i])

5.7 Example scripts 149

 wait_click(5000)

 if is_pressed("set") then

 break

 elseif

 is_pressed("display") then

 i = nil

 break

 elseif is_pressed("left") then

 i = i - 1

 if i <= 0 then

 i = #files

 end

 elseif is_pressed("right") then

 i = i + 1

 if i > #files then

 i = 1

 end

 end

 end

If the user selected a subfolder, the members of the subfolder are fetched
and the renameFile() function is executed on each member.

 if i then

 path = root.."/"..files[i]

 files, msg =

 os.listdir(path, false)

 if not files then

 error(msg)

 elseif not files[1] then

 error("Folder is empty")

 end

 path = path.."/"

 for _, file in ipairs(files) do

 renameFile(path, file)

 end

 end

Of course, you could easily modify this script to implement your own num-
bering scheme. Before trying out this (or your own) script, you should
definitely make a backup copy of your memory card.

150 CHAPTER 5 Scripting

Scheduled operation
The following script implements a quite different time machine. Instead of
accepting a few parameters and taking photos in equal intervals, it allows
for far more complex actions; it reads a schedule from a predefined text file
and processes that schedule.

This has advantages: you can describe a far more complex time series
than what is possible with a few parameters. There are disadvantages, too:
before using the script, you must create a schedule file on the PC. Later
changes in the field are not possible. To provide for some flexibility, I imple-
mented the option to select among different schedule files. All schedule
files are expected to be in folder CHDK/SCHED/. When you start the script,
you can scroll through the content of that folder and select the schedule
you wish to execute.

Each schedule file is created as a simple text file. Each line in the text
describes a different time series. After a time series has stopped, the next
line is executed. When there are no more lines left, the script stops. This is
the syntax of a single line:

[F/A/I/mm]met[n i1[-i2]][I/N/D]

Let’s examine what that means. The first clause is optional (denoted by the
brackets) and specifies the focusing mode. Cameras with a manual focus
option must be set manually to manual focus to allow for the options of
that clause. The following values are possible:

 f F causes the camera to determine the subject distance immediately
and then lock the focus, so the autofocus is switched off during the
subsequent shots.

 f A removes the focus lock and allows the camera to autofocus again with
each new shot.

 f I sets the focus to infinity.

 f mm sets the camera to the specified subject distance (in mm).

Next comes met, the Mission Elapsed Time. This entry defines when the se-
ries begins, measured from the time when the script was started. It is given
in the format [[h:]m:]s. Seconds must be defined, but minutes and hours
are optional.

The following clause is optional. In the case of a single shot, it can be
omitted. In the case of a time series, n defines the number of shots. i1
specifies the interval between the shots. Again, intervals are specified in
the [[h:]m:]s format. Optionally, a second interval i2 can be specified af-
ter a dash. If so, we have a sliding interval starting at i1 and gradually
changing to i2 with each shot. This allows for accelerating and decelerat-
ing the time series—an interesting option for time-lapse movies.

5.7 Example scripts 151

The last (and optional) clause controls the display:

 f I switches to the info display.

 f N switches to the normal display (no info).

 f D switches the display off to save power.

Lines that start with two dashes (--) are considered as comments and are
printed to the display. Here are a few examples for script files:

-- Example

F 0 D

1:0 10 15

A 5:0 10 15-5

This schedule file results in the following actions:

1. “Example” is printed to the display.
2. The first shot in the schedule is taken immediately. The camera is fo-

cused before the shot and the focus is locked. The display is switched
dark.

3. After one minute, the camera takes 10 shots with an interval of 15 sec-
onds between shots.

4. Finally, at MET 00:05:00, the camera switches back to autofocus and
takes another 10 shots starting with an interval of 15 seconds and end-
ing with an interval of 5 seconds.

Now let’s analyze the script and see how it works. It uses some elements
that we developed already in the previous two scripts, such as file brows-
ing, display mode switching, and exact timing. What is new here is reading
file content and parsing (interpreting) that content. Basically, this is a script
that reads and executes a script (the schedule file).

The header defines the script title. The schedule files are expected in
folder A/CHDK/SCHED. The function idiv() implements integer division and
is used instead of the standard division in order to achieve compatibility
with the PC version of Lua. The following pcall() expression is the connec-
tion to the debug environment on the PC (section 5.8).

--[[

@title Scheduled timeseries

--]]

schedules = "A/CHDK/SCHED"

function idiv(a,b)

 return (a-(a%b))/b

end

152 CHAPTER 5 Scripting

pcall(function()

 require("chdklib")

 schedules = "SCHED"

 end

)

The functions set_display_mode() and sleep_until() are not really new.
They are simply copied from the Accurate Time Lapse script at the begin-
ning of section 5.7.1.

props = require "propcase"

function set_display_mode(mode)

 while get_prop(props.DISPLAY_MODE)

 ~= mode do

 click("display")

 sleep(100)

 end

end

function sleep_until(time)

 repeat

 local sleep_time =

 time - get_tick_count()

 if sleep_time <= 0 then

 return false

 end

 wait_click(sleep_time)

 if is_pressed("set") then

 return true

 end

 until is_pressed("no_key")

end

Function focus(), however, does a bit more than its sibling in the Accurate
Time Lapse script. It performs the required focusing operations. In case of
immediate focusing (F), the shutter button is pressed halfway to perform
the focusing. The repeat loop waits until this process has completed. Then
the autofocus system is locked. A parameter value of A releases the lock
again. Other values are numeric and specify the subject distance. This is set
with set_focus() after locking the autofocus system.

5.7 Example scripts 153

function focus(f)

 if f == "F" then

 press("shoot_half")

 repeat until get_shooting()

 set_aflock(1)

 release("shoot_half")

 elseif f == "A" then

 set_aflock(0)

 else

 set_aflock(1)

 set_focus(f)

 end

end

You probably missed parameter value I, which stands for infinity. This is
taken care of in function parseFocus(), which analyzes the focus subclause
as specified in a schedule file. It converts the value I to –1, a value that
stands for infinity. Of course, it would also be possible to write –1 directly
into the schedule file, but the letter I is easier to remember and to write.

There are two more functions for parsing subclauses: parseTime() and
parseDisp(). The function parseTime() accepts [[h:]m:]s expressions
and converts them into milliseconds. To make parsing easier, it first ap-
pends a single colon to the end of the subclause. parseDisp() accepts the
valid display operators and converts them into the display states required
by function set_display_mode().

function parseFocus(token)

 t = string.upper(token)

 if "A" == t or "F" == t then

 return t

 elseif "I" == t then

 return -1

 end

 return tonumber(t)

end

function parseTime(token)

 local t, s, a = 0, token..":", 1

 for j = 1, 3 do

 local e = string.find(s, ":", a)

 if not e then break end

 t = t * 60

154 CHAPTER 5 Scripting

 if e > a then

 t = t + tonumber(

 string.sub(s, a, e - 1))

 end

 a = e + 1

 end

 return t * 1000

end

function parseDisp(token)

 t = string.upper(token)

 d = string.find("IND",t)

 if d then return d - 1 end

end

The function parse() parses a whole line. It first checks to see whether a
line is a comment line. If so, it prints the comment and returns nil. Other-
wise, it sets the default values for the resulting parameters and appends a
white space character to the end of the line to make parsing easier. Then
the function searches for white space. If a white space character is found,
the text before the white space is analyzed with one of the functions de-
fined above. In case of success, the read pointer (a) is incremented, so that
parsing continues behind the white space character.

function parse(line)

 if string.find(line, "%-%-")

 == 1 then

 print(string.sub(

 line, 3, #line))

 return nil

 end

 line = line.." "

 local n,focus,disp,met,i1,i2,a =

 1,nil, nil, 0, 0, 0, 1

 local e = string.find(line, " ")

 if (e - a) <= 1 then

 focus = parseFocus(

 string.sub(line, a, e - 1))

 if focus then

 a = e + 1

 e = string.find(line, " ", a)

 end

 end

5.7 Example scripts 155

 met = parseTime(

 string.sub(line, a, e - 1))

 a = e + 1

 e = string.find(line, " ", a)

 if e then

 local t =

 string.sub(line, a, e - 1)

 disp = parseDisp(t)

 if not disp then

 n = tonumber(t)

 end

 if disp or (not n) then

 return focus,met,1,0,0,disp

 end

 a = e + 1

 e = string.find(line, " ", a)

 local i1i2 =

 string.sub(line, a, e - 1)

 local p = string.find(i1i2,"%-")

 if p then

 i1 = parseTime(

 string.sub(i1i2, 1, p - 1))

 i2 = parseTime(string.

 sub(i1i2, p + 1, #i1i2))

 else

 i1 = parseTime(i1i2)

 i2 = i1

 end

 a = e + 1

 e = string.find(line, " ", a)

 end

 if e then

 disp = parseDisp(

 string.sub(line, a, e - 1))

 end

 return focus, met, n, i1, i2, disp

end

156 CHAPTER 5 Scripting

Finally, the function tohms() is already known from the Accurate Time Lapse
script:

function tohms(ticks)

 local ts = idiv((ticks + 50), 100)

 local t = ts % 10

 ts = idiv(ts, 10)

 local s = ts % 60

 ts = idiv(ts, 60)

 local m = ts % 60

 local h = idiv(ts, 60)

 return h, m, s, t

end

Now the real script execution starts. The schedule files in folder SCHED/ are
fetched. The program then runs through a loop to let the user select one of
those files. The index of the selected file is stored in variable i. We have al-
ready seen similar code in the script for file renaming.

files, msg =

 os.listdir(schedules,false)

if not files then

 error(msg)

elseif not files[1] then

 error("No schedule file")

end

i = 1

while true do

 cls()

 print("Press SET to select")

 print("LEFT, RIGHT to scroll")

 print("DISP to abort")

 print("Schedule: "..files[i])

 wait_click(5000)

 if is_pressed("set") then

 break

 elseif is_pressed("display") then

 i = nil

 break

 elseif is_pressed("left") then

 i = i - 1

 if i <= 0 then i = #files end

5.7 Example scripts 157

elseif is_pressed("right") then

 i = i + 1

 if i > #files then i = 1 end

 end

end

If a file was selected, we can now read the file and parse each line. But be-
fore we do so, we save the current display mode in order to restore it when
the script has finished. We also capture the current time in the variable
start_ticks. This will be the reference point for the Mission Elapsed Time.

The file is opened in read-only mode. The following for loop steps
through all the lines and invokes parse() on each of them. The return val-
ues are assigned to the variables foc, met, n, i1, i2, and disp. Depending on
whether a variable was supplied with a value or not (nil), the correspond-
ing steps are executed.

Before we take a picture with shoot(), we wait until the computed
event time (the start time plus the MET read from the file). If the user has
pressed the DISP key to cancel, the loop is exited. After a shot, a log entry is
created and printed to the display.

The sleep_until(), shoot(), and printing functions are contained in
an inner loop which handles the time series defined by the current sched-
ule line. For a single shot, n is 1, so this loop does not repeat. Otherwise, a
new event time is computed. If n is greater than 2, we have more than one
interval and must consider the possibility of sliding intervals, which we
compute from i1 and i2.

Finally, we close the schedule file, restore the display state, and—just in
case—release the autofocus lock:

if i then

 old_display_mode =

 get_prop(props.DISPLAY_MODE)

 start_ticks = get_tick_count()

 frame = 1

 file = io.open (

 schedules.."/"..files[i], "r")

 for line in file:lines() do

 local foc, met, n, i1,

 i2, disp = parse(line)

 if foc then

 focus(foc)

 end

 if disp then

 set_display_mode(disp)

 end

158 CHAPTER 5 Scripting

 if met then

 local next_event =

 start_ticks + met

 for k=1, n, 1 do

 if sleep_until(next_event)

 then

 print "Aborted"

 next_event = nil

 break

 end

 shoot()

 h, m, s, t = tohms(

 next_event-start_ticks)

 print(string.format(

 "Frame %u, MET %u:%u:%u.%u",

 frame, h, m, s, t))

 frame = frame + 1

 if n > 2 then

 next_event = next_event +

 idiv((n-k-1)*i1 +(k-1)*i2,

 n-2)

 else

 next_event = next_event + i1

 end

 end

 if not next_event then

 break

 end

 end

 end

 io.close(file)

 -- restore display mode

 set_display_mode(old_display_mode)

 -- restore AF lock mode

 set_aflock(0)

end

5.7 Example scripts 159

5.7.2 Bracketing

We already discussed bracketing in section 4.6. While early CHDK versions
relied mainly on scripts for bracketing, the newer builds of CHDK provide
enough built-in support for most bracketing applications. We can therefore
keep this section short.

Where scripts can optimize the bracketing process is in the area of Focus
Stacking. The standard CHDK function for bracketing (in Extra Photo
Operations>Bracketing in Continuous Mode>Subj.Dist.Bracket Value (MF))
uses an increment (in mm) between the different shots of a series. This in-
crement increases in proportion to the current focusing distance. If you
specify 100 mm as a bracket value and start at a distance of 100 cm, the
camera will shoot a series of photos with 100cm, 110cm, 121cm, 133.1cm,
… This is not bad, but it would be better to increment the focusing distance
based on the actual Depth of Field (DOF). This range increases with the focal
distance and not at all in linear proportions. In addition, the DOF depends
on the aperture and the focal length. A script can utilize the DOF and
produce an optimized series of photos.

The CHDK is able to compute the total DOF, the near limit, and the far
limit. These values can be shown on the display (section 4.2.8), but they are
also accessible in scripts. Unfortunately, we cannot use them in this script.
When the camera is in normal focusing mode, values for the near and far
limits that would fall into the macro range are returned as –1 (infinity). And
vice versa—when the camera is in macro mode, values outside the macro
range are returned as –1. However, we want a script that covers the full
range of distances from close-up to infinity. Fortunately, it is quite easy to
compute the far limit for each subject distance. Given the subject distance
f and the hyperfocal distance y, the far limit g is computed as:

g = y*f / (y-f)

provided that f is smaller than y. The hyperfocal distance is easily obtained
from the CHDK with:

y = get_hyp_dist

When starting at close range, we can therefore compute the far limit g for
each shot and use this value as the new subject distance for the next shot.
We stop as soon as we reach a specified end value or infinity.

Working this way, we get a series of shots with nicely overlapping
sharpness ranges while keeping the number of images at a minimum.

160 CHAPTER 5 Scripting

The following script accepts four parameters: two for the near limit and
two for the far limit of the composite sharpness range. Each limit is de-
scribed by a base value (in millimeters) and a factor (1, 10, 100). You don’t
have to click 1,000 times for a distance of one meter. Instead, you dial a
base value of 10 and a factor of 100, which is done with just a few clicks.
The far limit factor, in addition, allows dialing in infinity directly. The de-
fault range is set to (20 cm - infinity). Because there are no timing con-
straints for this script, we have used uBasic to implement it.

@title Adaptive Focus Stacking

@param a close distance (mm)

@default a 2

@param b factor (0=1,1=10,2=100)

@default b 2

@param c far distance (mm)

@default c 5

@param d factor (0=1,1=10,2=100,3=inf)

@default d 3

In the following instructions, we make sure that no parameters are invalid.
Invalid parameters (negative or zero distance) are set to their default
values.

rem consolidate parameters

if a < 1 then a = 2

if c < 1 then c = 5

Then the script computes the true limits in millimeters by multiplying the
base values with their factors. Only in the case of infinity do we directly
assign the value of –1 that represents infinity.

focal distance 1 focal distance 2 focal distance 3

far 1
far 2

near 1
near 2

near 3

total DoF of stacked images

DoF 1
DoF 2
DoF 3

Figure 5-3

Adaptive focus stacking

with the distance settings

depending on the DOF.

5.7 Example scripts 161

rem compute distances in mm

select b

case 0;

case 1;a = a * 10

case_else a = a * 100

end_select

select d

case 0;

case 1;c = c * 10

case 2;c = c * 100

case_else c = -1 rem infinite

end_select

The next instructions are used to turn the automatic flash off. Flash illumi-
nation is not really desirable for DOF stacking. In addition, the flash opera-
tion can make the script behave unpredictably because of the time needed
by the camera to recharge the flash. So, we store the current flash mode
into variable m and then call subroutine fmode. The desired flash mode (2 for
off) is set to transfer variable M.

rem turn off flash

m = get_flash_mode

M = 2

gosub "fmode"

Then, the shutter button is half-pressed. This is done to determine the cor-
rect exposure. If the camera is in autofocus mode, the focus distance is also
determined. The subroutine prep waits until the camera is ready to shoot.
The focus distance is retrieved and kept in variable z so that we can later
restore the focus. We also retrieve the hyperfocal distance and keep it in
variable y.

As a final preparation step, we lock the autofocus. During the following
shots, the autofocus facility will not be used. This includes the AF light, too,
which will not be illuminated.

press "shoot_half"

rem focus and exposure

gosub "prep"

z = get_focus

y = get_hyp_dist

print "Prior distance:",z

set_aflock 1

162 CHAPTER 5 Scripting

Now we can start shooting. The current focal distance is kept in variable f
which is set to the near limit (parameter a). The shooting distance is printed
on the screen to inform the user about the shooting progress. The focus is
set and the script is paused for a while to give the camera some time to
adjust the optics. The amount of time needed may depend on the camera
model. After this pause, the camera is fired.

Then we wait until the camera has processed the image (subroutine
wait). If the subject distance f was set to infinity or is larger than the hyper-
focal distance, we are done; a longer focus is not possible or does not result
in better sharpness. Otherwise, the DOF far limit of the current shot is de-
termined with the above formula. This value is used as the new focal
length:

rem DOF series

f = a

n = 0

do

 if f < 0 then

 print "dist: inf"

 else

 print "dist:",f

 endif

 set_focus f

 sleep 3000

 click "shoot_full"

 n = n + 1

 gosub "wait"

 if f < 0 or f >= y then goto "exit"

 f = y*f / (y-f)

 if f >= 65535 then f = -1

until f > c and c >= 0

After completing all shots, the camera is reset to its previous state. The
shutter button (which was still half-pressed) and the AF lock are released,
the camera is reset to its previous focal distance, and the flash is switched
back to its previous mode. Finally, we print a short summary and play a
timer sound to wake up the user. The wait_click allows the user 30 sec-
onds to read the screen:

:exit

set_aflock 0

release "shoot_half"

set_focus z

M = m

5.7 Example scripts 163

gosub "fmode"

print "done:",n,"shots"

playsound 3 rem timer sound

wait_click 30000

end

The subroutine fmode checks the current flash mode. If it is not the desired
flash mode (passed in transfer variable M), it fires the necessary key presses
to advance to the next item in the flash menu (section 5.1):

:fmode

r = get_flash_mode

while r <> M

 click "right"

 click "right"

 click "set"

 r = get_flash_mode

wend

return

The subroutine prep is used to wait until the camera is ready to shoot—i.e.,
until the command get_shooting returns 1. The subroutine wait works the
other way around; it waits until the camera has processed the current shot:

:prep

 do

 r = get_shooting

 until r = 1

return

:wait

 do

 r = get_shooting

 until r = 0

return

A few words are necessary about script usage. First, cameras that support
manual focusing must be switched to manual focusing mode. For other
cameras, no action is required.

If your camera has a diaphragm, you should use an aperture two f-stops
behind the open aperture. This will increase the DOF for each shot and thus
reduce the number of shots that need to be taken. When shooting with a
fully open aperture (and this is always the case for cameras that have only
an ND filter), a large number of images might be necessary to cover the

164 CHAPTER 5 Scripting

entire specified area of sharpness. This is particularly true for macro and
telephoto work. Make sure you have enough space on your memory card
and use fully loaded batteries.

5.7.3 Motion detection

Motion detection is one of the great features of the CHDK. This feature
makes use of the camera’s hardware motion detection facilities. The cam-
era provides such facilities for its own purposes: to enable image stabiliza-
tion and to adjust exposure time in regard to subject movements. The
CHDK uses them to trigger events—in most cases, to fire a shot. But if you
like, you can play a sound instead. CHDK motion detection has many useful
applications, such as lightning photography, wildlife and sports, surveil-
lance, and more.

Basics
Motion detection is enabled by the CHDK command md_detect_motion.

 uBasic:
md_detect_motion a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p

 Lua:
h = md_detect_motion(a, b, c, d, e, f, g, nil, i, j, k, l, m, n,

o, p)

Figure 5-4

Breuburg Castle, Germany. A picture

like this cannot be obtained in a single

shot with a camera that has an ND

filter but no diaphragm. The Adaptive

 Focus Stacking script was used to shoot

a series of differently focused images.

The settings a=45, b=1, d=3 resulted in

a focal range of 45 cm to infinity. The

six shots were then composed in

 CombineZP. Some retouching was

required for the clouds that were

moving fast between the shots,

resulting in a staggered effect.

5.7 Example scripts 165

The large number of parameters indicates that this command is highly
configurable. Let’s see what these parameters mean:

a,b Number of columns and rows the picture is divided into. By dividing the
picture into cells, motion can be detected in a particular image part (see
variables i, j, k, l, m). A fine grid enables the camera to detect the motion
of small objects, but the camera will also react more slowly to move-
ments.

c Color component observed.

0 = U channel (chroma, green-blue) in the YUV-color model

1 = Y channel (luma) in the YUV-color model

2 = V channel (chroma, red-green) in the YUV-color model

3 = R channel (red) in the RGB color model

4 = G channel (green) in the RGB color model

5 = B channel (blue) in the RGB color model

d Timeout in milliseconds. After the specified time, the next uBasic
command will be executed even if no motion is detected.

e Time interval (msec) between frames compared. Increase this value to
detect slow movements.

f Threshold value. If a change in at least one cell is larger than this
threshold value, an event is fired.

g Grid display on the screen.

0 = no cell grid is drawn

1 = cell grid is drawn

h Return variable. Contains the number of cells where motion was detected.

i Masking mode

0 = nothing masked

1 = everything inside of (j,k,l,m)

2 = everything outside of (j,k,l,m)

j,k First column and row of mask

l,m Last column and row of mask

n Shutter mode

0 = leave shooting to script

1 = immediate shoot without focusing (fastest shooting option)

9 = don’t release shutter on immediate shoot (leave that to script)

Under Lua, n = 0 should always be used. Lua scripts are fast enough and
don’t require this work-around for the slow uBasic interpreter.

o Sub-sampling. Analyze only every o-th pixel. Higher values improve speed
but reduce accuracy.

p Delay in milliseconds before triggering starts. Should be zero for lightning
photography. Otherwise, allow some delay for calibration.

166 CHAPTER 5 Scripting

An additional command allows for a finer analysis of the detected motion:

md_get_cell_diff i,j,k Basic

k = md_get_cell_diff(i,j) Lua

Here, the variable k will contain the change in the i-th cell and the j-th row.
The value of k will range from 0 to 255. This command could be used, for
example, after the command md_detect_motion in order to take a shot
when the detected motion has stopped.

The script
The following script example, written in Lua, is a universal script for motion
detection. Of course, on the Internet—and in particular, on the CHDK web-
site—you will find many similar scripts, and I’ve drawn some inspiration
from a number of them. All of these scripts are based on the powerful
CHDK command md_detect_motion, which we have discussed above. This
command alone has a dozen parameters. Add additional parameters for
 prefocusing and timing, and you end up with 15+ parameters.

This is anything but practical when working in the field—even when
working with parameter sets as explained in section 5.1. In the field, it is
better to have a selection of clearly named and predefined programs for
different scene types, such as “ Lightning”, “Fast Motion”, “Small Objects”,
“ Macro”, etc., that you simply select from a list.

This is exactly what the following script provides. The most commonly
used scene programs are already predefined, but you can easily add addi-
tional scene programs by extending the script. When running the script,
simply select the required scene program using the RIGHT, LEFT, and FUNC/
SET keys. By selecting the scene program named “Parameters”, you will still
be able to control the script via individual parameters.

Now let’s see how this script is constructed. First, the parameters are
defined in the usual way. We have chosen the parameter names so that
they match the names used in the description of the command md_detect_
motion (see previous page). So, we only have to explain the additional
parameters.

s This parameter can be used in combination with any scene program. The
asterisk in front of the parameter description indicates this. When set to
0, the script will run in test mode—meaning that no pictures are taken.
The value of 1, in contrast, means full action.

v This parameter can also be used in combination with any scene program
(indicated by the asterisk in front of the parameter description). The
parameter is used for specifying a pause after each shot (in seconds). The
value –1 has a special meaning: the script pauses until the user presses
the DISP button.

5.7 Example scripts 167

t Specifies the duration (in seconds) for video sequences or time series
when the camera is switched to video or series mode.

u This parameter is used for focus control:

–1 = Prefocus before motion is detected using autofocus (AF).

0 = Use autofocus immediately before each shot that is taken.

>0 = Prefocus with a fixed distance before motion is detected. u specifies
the distance in centimeters. This can be used in combination with most
scene programs. Please note that cameras with manual focus mode must
first be switched to this mode when using focusing by distance.

z This parameter is used for backlight control:

0 = The display backlight is completely switched off.

1 = Backlight is switched off but is illuminated again after a shot for
image review.

2 = Backlight remains switched on.

We have also added an additional value option to parameter f (threshold
or sensitivity). If f is negative, the threshold will be dynamically derived
from the brightness value measured by the camera. Even then it is possible
to influence how the threshold is derived from the brightness value: the
more negative f is, the smaller the threshold will be, and the more sensitiv-
ity motion detection will register.

--[[

@title Motion detection

@param s *Test(0=test,1=real)

@default s 1

@param v *Pause(s)(-1=DISP)

@default v 0

rem Only for program >Parameters<

@param a # columns

@default a 4

@param b # rows

@default b 4

@param c Channel(0U,1Y,2V,3R,4G,5B)

@default c 1

@param d Timeout(s)

@default d 55

@param e Detection interval(ms)

@default e 1

@param f Threshold(0-255, <0=auto)

@default f -1

@param i Mask(0=no 1=in 2=ex)

@default i 1

@param j First col mask

168 CHAPTER 5 Scripting

@default j 2

@param k First row mask

@default k 2

@param l Last col mask

@default l 3

@param m Last row mask

@default m 3

@param o Subsampling (pixel)

@default o 6

@param p Delay (0.1s)

@default p 1

@param t Duration series/ video

@default t 5

@param u *Focus(0=AF -1=PreAF >0=cm)

@default u -1

@param z Bcklght(0=off 1=revie 2=on)

@default z 2

]]

function idiv(a,b)

 return (a-(a%b))/b

end

pcall(function()

require("chdklib")

 end

)

The definition of the parameters in the script header section is followed by
the definition of function idiv() and a pcall() expression that we already
have seen in earlier scripts. These expressions allow testing and debugging
the script on a PC (section 5.8). Next are the definitions of some basic func-
tions needed by the main motion detection script:

function adapt(thresh)

 if thresh >= 0 then

 return thresh

 end

 local r = get_bv96()

 local w = 48 + thresh - idiv(r,20)

 if w < 12 then w = 12

 elseif w > 36 then w = 36

 end

 return w

end

5.7 Example scripts 169

The function adapt() is used to compute the threshold (sensitivity) de-
pending on the scene brightness value measured by the camera. We get
this value with the CHDK function get_bv96(). The following formula is
heuristic and was found acceptable during trials. It may be changed if re-
quired. The resulting threshold value in variable w is then clipped between
12 and 36 and returned. If the incoming threshold has a positive value, it is
simply returned—no dynamic shareholding is wanted in this case:

function focus()

 if u <= 0 or f < 0 then

 press("shoot_half")

 end

 if u > 0 then set_focus(u * 10) end

 repeat until get_shooting()

end

Function focus() is used for prefocusing or for immediate focusing. It
works by pressing the shutter button halfway. This is also done in the case
of dynamic shareholding (f<0) because the shutter button must be half-
pressed to determine the scene brightness. If a fixed subject distance is
specified (u>0), this distance is set. After all these preparations, the func-
tion waits until the camera is ready to shoot:

function series(duration)

 press("shoot_full")

 sleep(duration)

 release("shoot_full")

end

function video(duration)

 click("shoot_full")

 sleep(duration)

 click("shoot_full")

end

Triggering a time series or a video clip works a bit differently from taking a
photo. For a time series, the shutter button must be pressed, then after a
while released again. For a video clip, the shutter button must be clicked
(pressed and released), and after a while it must be clicked again:

170 CHAPTER 5 Scripting

function pause(duration)

 if duration < 0 then

 repeat

 print("Continue: DISP")

 wait_click(3000)

 until is_pressed("display")

 else

 print(duration.."s pause")

 sleep(duration*1000)

 end

end

function wait()

 repeat until not get_shooting()

end

function wake()

 release("shoot_half")

 click("set")

 click("set")

end

The function pause() waits for the specified time. If a negative duration is
specified, it waits for the DISP button to be clicked.

The function wait() simply waits until the camera has completed the
processing of a shot. When this happens, the function get_shooting() re-
turns false.

The function wake() is invoked in the case of a timeout when no motion
is detected. It releases the shutter button so that it can be half-pressed
again to update focus and exposure. Then it clicks the FUNC/SET button
twice, which does nothing except prevent the camera from falling asleep.

Now we can start with the execution of the main script. The first step is
to define the different scene programs. Here we use a powerful feature of
 Lua: the ability to store functions in tables. Each scene program is repre-
sented by a function. When you select a scene program, the corresponding
function will be invoked and will set the script parameters as required. We
will explain the predefined scene programs and their parameters at the
end of the script.

There are two tables: the first contains the scene program names (la-
bels); the second contains the corresponding functions. It is just a matter
of adding additional labels and functions to extend this script with addi-
tional scene programs:

5.7 Example scripts 171

-- Program definition

labels = {"Parameters",

 " Lightning", "Fast",

 "Small Objects", " Macro",

 " Hat"

-- add additional labels here

}

programs = {

function() --Parameters

end,

function() --Lightning

 a,b,c,d, e,f, i,o,p,t,z

= 4,4,1,55,1,10,0,6,0,2,1

 if u == 0 then u = -1 end

end,

function() --Fast

 a,b,c,d, e,f, i,j,k,l,m,o,p,t,z

= 6,4,1,30,1,-5,1,2,2,5,3,6,1,5,2

 if u == 0 then u = -1 end

end,

function() --Small Objects

 a, b, c,d, e, f, i,j,k,l,m,o,p,t,z

= 12,12,1,55,50,-1,1,2,2,11,11,1,

 1,5,2

if u < 0 then u = 0 end

end,

function() –Macro

 a,b,c,d, e, f, i,j,k,l,m,o,p,t,z

= 5,5,3,55,10,-1,1,3,3,3,3,6,1,5,2

 if u == 0 then u = -1 end

end,

function() --Hat

 a,b,c,d, e, f, i,o, p,t,z

= 1,1,1,55,10,24,0,12,5,5,0

if u < 0 then u = 0 end

if v < 1 then v = 5 end

pause(v)

end

--[[add additional program implementations here]]

}

After we have populated the two tables with labels and functions, we can
now allow the user to select one of them. The number of the scene pro-
gram is stored in the variable program. The currently selected program label

172 CHAPTER 5 Scripting

is printed onto the display. The script then waits for a key press with wait_
click(). Depending on the key clicked (RIGHT or LEFT), the value of program
is decremented or incremented. When program becomes too small, it re-
starts at the largest program number (wraparound), and similarly, when it
becomes too large, it restarts at 1. This whole section is executed in a loop
that is only left when FUNC/SET is pressed. Even when wait_click() times
out after 10 seconds, the script will loop around and wait for more key
presses.

Finally, we invoke the function corresponding to the selected program.
This function will assign new values to the script parameters and will thus
configure the script for the selected scene program:

-- Program selection

program = 1

repeat

 cls()

 print("Program:LEFT/RIGHT/SET")

 print(">"..labels[program].."<")

 wait_click(10000)

 if is_pressed("left") then

 program = program-1

 if program < 1 then

 program =# programs

 end

 elseif is_pressed("right") then

 program = program + 1

 if program ># programs then

 program = 1

 end

 end

until is_pressed("set")

-- Assign parms for selected program

programs[program]()

In the following section, we perform a sanity check for the parameters
controlling the mask borders and the threshold. We simply check to see if
the values are out of bounds and make sure that the low boundary is not
higher than the high boundary. A threshold of 0 would be nonsense; the
camera would fire without any motion:

-- Inhibit bad mask bounds

if m > b then m = b end

if m < 1 then m = 1 end

if k > m then k = m end

if k < 1 then k = 1 end

5.7 Example scripts 173

if l > a then l = a end

if l < 1 then l = 1 end

if j > l then j = l end

if j < 1 then j = 1 end

--Inhibit zero threshold

if f == 0 then f = -1 end

We now retrieve the drive mode from the camera. This is done by using the
 commands get_drive_mode() to detect Continuous Mode (1) and get_
mode() to detect Video Mode. After this piece of code is executed, we have
the following values in variable s:

0 debug, 1 single shot, 2 series, 3 video

-- check for drive mode

if s ~= 0 then

 s = 1

 if get_drive_mode() == 1 then

 s = 2

 end

 local _, video = get_mode()

 if video then s = 3 end

end

Variable grid is set to 1 if a mask is used (i>0), indicating that the grid is to
be shown on the display. Finally, the variables p and d are converted to mil-
liseconds:

-- scale and adapt parameters

if i > 0 then grid = 1 else grid = 0 end

p = p * 100

d = d * 1000

Now we are ready to start the event loop. At the very beginning, we check
to see whether there is still space left on the memory card. If not, we break
the loop and stop. If so, we print a short message about how to stop the
script. The variable shots is a counter for performed shots.

Each time the event loop cycles, the camera is newly set up. If prefocus or
a fixed distance is selected, the subroutine focus() is called to perform the
 focusing. The same is true when dynamic thresholding is selected, because
the half-press of the shutter button performed in subroutine focus() is
needed to measure the brightness of the scene. The threshold is then
computed in subroutine adapt(). In the case of immediate focus (u==0), we
release the shutter button half-press to be able to use it again immediately
before the shot.

174 CHAPTER 5 Scripting

The variable z controls the display backlight. It is possible to switch the
backlight off while waiting for a movement, or completely until the script
is interrupted. By saving battery power, the camera can be used for longer
surveillance tasks.

Then motion detection starts. The result is written into variable cells
that contain the number of grid cells where motion is detected. If motion
detection times out, cells contains the value 0. When a motion is de-
tected, a shot can be taken. If immediate autofocus (u==0) is selected, the
 subroutine focus is called again. Then the shot is performed by using the
 command press("shoot_full"). Note that the command press() and
not the command click() is used so that the shutter button stays pressed.
In the case of series and video sequences, the subroutines series and
video are called instead. Finally, a message is printed to the screen and the
image counter is incremented.

The backlight is switched on again, if desired. The script then pauses
optionally and releases the shutter button. During that pause, the camera
remains in review mode showing the image taken on the display. Then we
wait until the camera is ready to shoot again. In the case of a timeout
(cells==0), we perform the subroutine wake to stop the camera from pow-
ering down. The camera is now ready for the next cycle:

-- event loop

shots = 0

print("Stop: Shutter Button")

while true do

 if get_raw() then

 if get_raw_count() == 0 then

 break

 end

 else

 if get_jpg_count() == 0 then

 break

 end

 end

 if (s > 0 and s < 3 and u ~= 0)

 or f < 0 then

 focus()

 if u == 0 then

 release("shoot_half")

 end

 end

 if z <= 1 then

 set_backlight(0)

 end

5.7 Example scripts 175

 local threshold = adapt(f)

 local cells = md_detect_motion(a,

 b, c, d, e, threshold, grid,

 nil, i, j, k, l, m, 0, o, p)

 if cells > 0 then

 if s > 0 then

 if u == 0 then focus() end

 if s == 1 then

 press("shoot_full")

 elseif s ==2 then

 series(t * 1000)

 else

 video(t * 1000)

 end

 else

 playsound(1) -- shutter sound

 end

 shots = shots + 1

 print(shots..": "..cells.."

 cells, Threshold: "..threshold)

 end

 if z == 1 or v < 0 then

 set_backlight(1)

 end

 if v ~= 0 then pause(v) end

 if cells > 0 then

 release("shoot_full")

 wait()

 cells = 0

 else

 wake() -- inhibit power down

 end

end

This concludes the implementation of the motion script. Now let’s see how
the scene programs differ from each other and how to use them. When
using the script, you should set the camera’s native time-out for power-
down to at least one minute.

176 CHAPTER 5 Scripting

 Lightning
Lightning photography seems to be a passion among some photographers.
The problem, however, is that thunderstorms are quite unpredictable. The
National Weather Service (http://www.weather.gov/) and other Internet
services may help to locate thunderstorms.

The next problem—after you have located a thunderstorm—is to catch
a lightning flash. Simply opening the shutter for a longer period of time is
not really a good option; if there are other light sources in the scene, the
resulting picture might be overexposed.

Fortunately, practically all lightning flashes are preceded by a smaller
preflash. This preflash is sufficient to trigger a lightning sensor and a con-
nected camera. If the camera is fast enough, it will capture the main flash.
Such lightning sensors are not cheap. Fortunately, most CHDK users don’t
need one; they can use the camera’s image sensor for the same purpose.

The lightning scene program of our script is configured for speed. We
have chosen a fairly coarse 4x4 grid, a short detection interval (1 millisec-
ond), and no delay before shooting. By specifying a subsampling value of 6,
we analyze only every sixth pixel, again resulting in fast operation. Also, we
prefocus before motion detection starts unless a fixed distance is set in
parameter u. Autofocusing directly before the shot would definitely be too
slow to catch any lightning flash. Every 55 seconds (d=55), the motion de-
tection command times out. In this case, the program loops around, does
another cycle of prefocusing, and then waits again for motion. The script
reacts to changes in the YUV brightness channel (c=1) and uses a low
threshold for high sensitivity.

How should you expose for lightning? Using automatic exposure is out
of the question. Instead, you should use Overrides (section 4.3.1). As a start-
ing point, set the aperture to f/5.6 and the sensor speed to ISO 100. For
cameras without a diaphragm, dial in the ND filter (which gives you an
equivalent of f/8.0 at wide-angle zoom setting) and select ISO 200. Choose
an exposure time that results in the desired scene rendering. Then put the
camera on a tripod, start the script, select the Lightning program, press the
FUNC/SET button, and wait.

WARNING! Lightning photography is dangerous. Each year lightning kills

numerous people. Please refrain from photographing lightning in the open. If

you happen to be outside during a thunderstorm, do not seek protection un-

der trees. Instead, find a ditch or a surface depression and duck down with

your legs closed. A safe place is also inside a car (not a convertible). The safest

way to photograph lightning is from inside a building.

5.7 Example scripts 177

Fast movements
The settings for fast movements are similar to those for lightning. We use
a slightly finer grid (4x6) and discard the border grid cells, so movements at
the very border of the image are ignored. After the motion is detected, we
allow for a small delay of 100 milliseconds for camera calibration. The
threshold is determined from the brightness value measured by the
camera, but with a higher sensitivity than normal. Because conditions may
change rapidly, we set the time-out to 30 seconds so that the camera can
more frequently adapt to altered conditions.

Small objects
The next program is used for detecting rather small movements or move-
ments of small objects. For example, it is sufficiently sensitive to detect the
movement of a hand in group photos.

This is possible by using a very fine grid of 12x12 = 144 cells. Again we
discard the cells at the borders of the image. Motion detection with such a
high number of cells performs much more slowly. We therefore adapt the
other parameters of the program to slow operation. By using a subsam-
pling value of 1, we analyze each single pixel, resulting in slower operation
but working much more accurately. The program will catch slower move-
ments than the previous programs because of a detection interval of
50 milliseconds. Finally, we focus immediately before the shot (u=0) if a
fixed distance was not set in parameter u. Focusing immediately before the
shot would not be suitable for fast movements (because it takes too long),
but it results in more precisely focused images.

Macro
The macro program has a 5x5 grid where only the center cell is used for
detection; all other cells are discarded. Only those movements happening
in the very center of the image will be detected. Movements in the outer
areas—typically movements of branches and leaves—are ignored. For the
same reason, we only observe changes in the red channel (c=3). Move-
ments of dominantly green foliage will be ignored, while movements of
small red, orange, or brown subjects will be detected.

You may want to use a fixed subject distance (u=...) for this program
or switch the camera to Macro Mode.

178 CHAPTER 5 Scripting

Hat
The last scene program, > Hat<, is not actually used to capture motion. In-
stead, it’s used to capture unaware people. The camera is placed some-
where, the script is started, and a hat is placed over the camera to hide it.
When something interesting happens, we lift the hat and the camera fires.

For this program, a simple 1x1 grid with a rather high threshold is fully
sufficient. Of course, focusing must be performed immediately before the
shot. We have also specified a high delay between motion detection and
the actual shot to allow for the hat to be removed completely. There is a
pause (normally five seconds) after the shot to allow the hat to be replaced.
The script begins with that pause, so after starting the script you have time
to cover the camera. In most cases, the camera should be set to autofocus
and automatic exposure.

 Benchmark
The big question is, how fast is motion detection? This depends on several
factors: the camera, the script language used, and how well the script is
tuned. One keen CHDK user has provided the community with an aid for
determining the reaction time of motion detection scripts and cameras.
Just open the URL http://dataghost.com/chdk/md_meter.html in your web
browser and maximize the browser so that it fills the whole screen. Click
the Execute link. This will start a script that quickly fills a sequence of table
cells with black. After a while, the cells are made visible again and the cycle
is repeated.

Figure 5-5

Despite its tattered wings, this bee is

still busy collecting honey from a

borage blossom. Photographed with

the Macro Motion Detection program.

Canon Digital Elph SD1100 IS, 38 mm

(35mm equiv.), f/2.8, 1/430 sec, ISO 73.

Shot in DNG format, developed with

 RawTherapee, somewhat cropped.

5.7 Example scripts 179

Now start a motion detection script on your camera and point the cam-
era to the screen (a tripod is recommended). If you use the script developed
in this section, choose the lightning scene program. If properly configured,
the script will react every time the table cells become visible again. By the
time the shutter is released, a few table cells will already be painted black.
The first table cell that is visible in the recorded image tells you the reaction
time.

Here are the delays between motion and shutter release measured with an
SD1100 IS and the scene programs implemented above. For comparison,
we have added the reaction time when the camera is manually triggered.

Program Delay Remark

Lightning 100 msec

Fast 150 msec

Fine 1050 msec Includes focusing

 Macro 120 msec

 Hat 1000 msec Includes focusing

Manual 1 400 msec Shutter half-pressed

Manual 2 1200 msec Includes focusing

Figure 5-6

Top: Speed test with a Canon Digital

Elph 1100 SD: the shutter starts to

open after 100 ms. Bottom: The human

user has no chance, even when using

the computer’s screen print facility.

300 ms was my best score. When

shooting manual with the camera, we

would have to add the camera’s delay

time on top of that (see below).

180 CHAPTER 5 Scripting

5.7.4 Exposure control

The smaller Canon cameras are not equipped with diaphragms. The conse-
quence is that the Aperture value (Av) cannot be changed. Therefore, these
cameras do not have a shutter priority program where you preset a shutter
time and the aperture is adapted.

The following script solves that problem in a different way. It modifies
the speed of the sensor (aka the ISO value) to adapt the exposure to a pre-
set shutter value. The shutter value can be preset through the CHDK Over-
rides (section 4.3.1). The script presented here switches the ND filter out. In
bright conditions, you should use a rather fast shutter speed instead.

The script is written in Lua. The header defines a single parameter, s,
used to specify the maximum acceptable ISO speed. If the scene is too dark
for that ISO value and the preset shutter speed, the script will reduce the
shutter speed rather than increasing the ISO speed above that limit.

As in previous examples, function idiv() and the pcall() expression
are used to provide portability to a PC-based debug environment (section
5.8):

--[[

@title Shutter priority

@param s maxISO 1=50...8=6400

@default s 4

--]]

function idiv(a,b)

 return (a-(a % b))/b

end

pcall(function()

 require("chdklib")

 end

)

The variable minIso defines the Sv96 value for the minimum acceptable
ISO value (usually ISO 50). Should the scene be too bright for such a value,
the script will increase the shutter speed rather than go below that value.

The following table, corr, contains correction values for shutter speeds
of 1/1000 sec or shorter. Often, such short shutter speeds are not really
precise. If desired, camera owners can calibrate their cameras by making
test shots at 1/1000, 1/2000, 1/4000, and so on. The resulting values go
into table corr. In function compute_corr(), the script reads values from
that table and interpolates between those values for shutter speeds that
do not exactly match the defined points:

5.7 Example scripts 181

minIso = 384 -- ISO 50

--[[Correction values for

 high shutter speeds

 (unit = 1/96th f-stops).

 First value for 1/1000,

 second value for 1/2000, etc.

 + too dark, make brighter

 - too bright, make darker

]]

corr = {0,0,0,0,0,0,0,0,0,0}

 function compute_corr(tv)

 if tv >= 960 then

 local i1 = idiv(tv-960, 96)

 local c1 = corr[i1]

 local c2 = corr[i1+1]

 return idiv(

 (c2-c1)*(tv%96),96) + c1

 else

 return 0

 end

end

All the prerequisites are now set up, and the script execution can begin. The
parameter s is clipped to its limits, and the maximum acceptable Sv96 is
computed. Then the Bv96 value is read by half-pressing the shutter button,
waiting until the camera signals “ready to shoot”, and reading out the Bv96
value.

Next, the ND filter is switched out, the Tv96 value is read, and the Av96
value is read, too. This seems to be superfluous for cameras without dia-
phragms, but it isn’t: the aperture changes with the focal length. At a tele-
photo setting, the aperture is usually smaller than at wide-angle setting:

if s < 1 then

 s = 1

elseif s > 8 then

 s = 8

end

maxSv = 288 + s * 96

press("shoot_half")

repeat

 sleep(1)

until get_shooting()

182 CHAPTER 5 Scripting

 bv = get_bv96()

set_nd_filter(2)

 tv = get_tv96()

 av = get_av96()

Now, that we have Bv96, Tv96, and Av96, we can compute Sv96 according
to the APEX formula (section 4.2.7). There is one modification here: we al-
low for a user-defined correction value as discussed above. After Sv96 is
computed, the script checks to see whether it exceeds the maximum ac-
ceptable ISO value or is below the minimum possible ISO value. If yes, a
recalculation is performed. Finally, the Sv96 value is set, the camera is fired,
and when the processing is done, the shutter button half-press is released:

sv = av + tv –

 bv + compute_corr(tv)

if sv > maxSv then

 tv = tv - (sv - maxSv)

 sv = av + tv –

 bv + compute_corr(tv)

end

if sv < minIso then

 tv = tv - (sv - minIso)

 sv = av + tv –

 bv + compute_corr(tv)

end

set_sv96(sv)

sleep(10)

click("shoot_full")

repeat

 sleep(1)

until not get_shooting()

release("shoot_half")

Before running this script, make sure that the values for ND filter and ISO
speed are not overridden in the CHDK Overrides.

5.7.5 Remote control

While CHDK features basic functions for controlling the camera through
the USB port (section 4.9), more sophisticated functionality can be achieved
by combining USB control with a script. Typically, such a script would use
the command get_usb_power to wait for an event from the remote control.

5.7 Example scripts 183

The signal can further be analyzed; the command returns the pulse length
in units of 10 msec. So, different functions can be encoded using different
pulse lengths.

The following script uses that functionality to allow zooming and
shooting with a simple remote control as shown in section 4.9. A short click
on the button of the remote control will fire the camera. For zooming, there
are two modes that can be selected via parameter m:

 f In Step mode, the remote button must be pressed longer than half a
second to advance the zoom to the next position. The number of posi-
tions can be set via parameter s. (For s <= 1, zooming is disabled and
any signal will fire the camera.) When the longest focal length is
reached, the zoom direction will reverse until the shortest focal length
is reached.

 f In Seconds mode, the remote button must be pressed longer than half a
second to zoom. The duration of the key press relates directly to the fo-
cal length: a longer press results in a longer focal length. The longest
duration (for the longest focal length) can be set via parameter s. (For
s <= 0, zooming is disabled and any signal will fire the camera.)

Optionally, the camera’s backlight can be switched off while the script is
running (parameter b). Another option (parameter t) is to avoid the camera
powering down because of a time-out.

The script should run fine on most cameras since it automatically
adapts to the different number of zoom steps as used by different cameras:

@title USB Remote Control

@param m Zoom:0=steps,1=duration

@default m 0

@param s Steps/seconds(>1)

@default s 4

@param b Backlight:0=off,1=on

@default b 1

@param t Timeout:0=no,1=yes

@default t 0

The number of zoom steps is first stored in variable s. This number varies
for the different camera models (A-series: 9 or 15 zoom steps; S-series: 129
steps). When running in Step mode, the script first determines the current
zoom step (n) and the best zoom direction (d). The zoom speed is set to
prepare the camera for the set_zoom commands to come (section 5.5.4).
Finally, variable e is initialized for time-out control:

184 CHAPTER 5 Scripting

if b > 0 then b = 1 else b = 0

z = get_zoom_steps

if m = 0 then

 s = s - 1 rem 0..s-1

 if z < s then

 s = z

 endif

 c = get_zoom

 n = (c * s + z/2) / z

 d = 1 rem zoom in

 if n >= s then

 d = -1 rem zoom out

 endif

endif

set_zoom_speed 100

e = get_day_seconds + 50

The main while loop contains an inner do loop that waits on a signal from
the USB port. Within this loop, the display backlight is set to the desired
state. If power-down is to be inhibited, the subroutine wakeup is called.

When a USB signal arrives (indicated by p>0), the duration of the pulse
is analyzed. If the duration is shorter than 500 msec or if zooming had been
disabled by setting parameter s to a value <= 1, the camera is fired. Other-
wise, the subroutine zoom is executed. Afterwards, the script loops and
waits for the next signal:

while 1

 do

 set_backlight b

 if t <= 0 then gosub "wakeup"

 p = get_usb_power

 until p > 0

 print "USB Pulse",p * 10;"msec"

 if p > 50 and s > 0 then

 gosub "zoom"

 else

 shoot

 endif

wend

end

The subroutine wakeup “tickles” the camera every 50 sec by pressing the
FUNC/SET button twice. This will keep the camera from powering down. As

5.7 Example scripts 185

a matter of fact, it is essential that the camera’s native time-out interval for
power-down is set to a value of one minute or more.

:wakeup

 r = get_day_seconds

 if r > e then

 click "set"

 click "set"

 e = r + 50

 endif

return

Finally, the subroutine zoom is responsible for performing the zoom opera-
tion, depending on the mode parameter m:

 f In Step mode, the current step value n is incremented by the value of the
direction indicator d. If n hits the lower or upper limit, d is inverted. Then
the physical step value is computed.

 f In Seconds mode, the physical step value is computed directly from the
pulse length.

After setting the new zoom level, a sleep command is issued to allow the
camera to adjust the lens before new USB signals are accepted:

:zoom

 if m = 0 then

 rem Step mode

 n = n + d

 if n = 0 or n = s then

 d = -d

 endif

 c = (n * z + s / 2) / s

 else

 rem Seconds mode

 i = s * 100 - 50

 c = ((p - 50) * z + i / 2) / i

 if c > z then

 c = z

 endif

 endif

 set_zoom c

 sleep 500

return

186 CHAPTER 5 Scripting

5.7.6 Configuration switching

The CHDK features an incredible number of different configuration param-
eters. Under shooting conditions, it is not always easy to keep an overview
of which parameters are configured with which value. Wouldn’t it be great
if we could create some custom configurations—let’s say for casual shoot-
ing, HDR work, panorama shooting, and kite aerial photography—and later
simply switch between them? We have already seen something similar for
the parameters of a script that we can save as a numbered parameter set
and recall later (section 5.1).

The following script does exactly that. It uses the fact that all CHDK
configuration parameters are stored in a single file, CHDK/CCHDK.CFG. When
you invoke the script, it allows you to create a copy of this file, if the file has
changed since the last copy was made. It also allows you to select one of
the copies and make it the current configuration. After a restart of the
camera, the selected configuration becomes the active configuration. Of
course, every time the configuration is switched, a backup of the former
configuration is made—just to be safe.

The script is written in Lua because it needs the file management and
I/O functions of Lua. It maintains a small INI file (CHDK/CONFSW.INI) to re-
member the currently active configuration and a counter for the saved
configurations. These are all stored in folder CHDK/CONFIGS. As in the previ-
ous examples, the pcall() expression provides compatibility with a PC-
based debug environment (section 5.8).

--[[

@title Switch CHDK configuration

--]]

root = "A/CHDK"

pcall(function()

 require("chdklib")

 root = "TEST"

 end

)

configs = root.."/CONFIGS"

ininame = root.."/CONFSW.INI"

current_config =

 root.."/CCHDK.CFG"

The INI file is created with the help of function write_ini(). This function
accepts the parameters name with the name of the current configuration

5.7 Example scripts 187

and cnt with the current count of saved configurations. It writes two text
lines that should look like this:

cnt = 1

cur = CONF1.CFG

To be safe, the new file is first written to file CONFSW.INI.NEW. If this is suc-
cessful, the old INI file is renamed to CONFSW.INI.BAK (existing files of that
name are deleted first), and file CONFSW.INI.NEW is renamed to CONFSW.INI.
This is done in function _activate_file(). Working in this way, we always
have a valid INI file. Even a battery going flat when writing the INI file can-
not lead to a corrupt file:

 function write_ini(name, cnt)

 local new = ininame..".NEW"

 local file,msg =

 io.open (new, "w")

 if not file then error(msg) end

 local ret,msg = file:write(

 "cnt="..cnt.."\n")

 if ret then

 ret,msg = file:write (

 "cur="..name.."\n")

 end

 file:close()

 if ret then

 ret,msg =

 _activate_file(new, ininame)

 end

 if not ret then error(msg) end

end

function _activate_file(new, to)

 local bak = to..".BAK"

 os.remove(bak)

 os.rename(to,bak)

 local ret,msg =

 os.rename(new,to)

 if not ret then

 os.rename(bak,to)

 end

 return ret,msg

end

188 CHAPTER 5 Scripting

Next is the definition of the table parser_funcs containing two functions.
These functions will be used for parsing the entries of the INI file using
regular expressions. The function with the key “count” checks to see
whether a text line passed in the variable line has the syntax “cnt=…”
where the characters following the equality sign must be decimal digits. At
least one digit is required.

The function with the key “current” checks for text lines with the syntax
“current=…”. Here any characters are accepted after the equality sign. In
both cases, the matching characters are captured (and therefore the paren-
theses) and assigned to the local variable s. In the case of success, the value
of s is assigned to the variables ccount resp. config_name and the functions
return true:

parser_funcs={

 count = function(line)

 local s = line:match(

 "cnt = ([0-9]+)")

 if s then

 ccount = tonumber(s)

 return true

 end

 end,

 current = function(line)

 local s = line:match(

 "cur=(.+)")

 if s then

 config_name = s

 return true

 end

 end,

}

The function copy_file() is used for copying configuration files. In this
case, we first copy to an auxiliary file with the suffix “.NEW” and later re-
name it to the true target file name with the function _activate_file().
Again, we don’t want to end up with a corrupted configuration file when
power fails or the memory card is full.

The function first opens the source file in read mode and the target file
in write mode. Because configuration files are not text files but binary files,
we add the “b” option to the mode parameter of the io.open() function.
The content of the source file is then read in chunks of 256 bytes and writ-
ten to the target file. It is essential that we always close files that are suc-
cessfully opened:

5.7 Example scripts 189

 function copy_file(from, to)

 local new = to..".NEW"

 local ffile, msg =

 io.open (from, "rb")

 if not ffile then error(msg) end

 local tfile, msg =

 io.open (new, "wb")

 if not tfile then

 ffile:close()

 error(msg)

 end

 local ret = true

 while ret do

 local s = ffile:read (256)

 if not s then break end

 ret, msg = tfile:write(s)

 end

 tfile:close()

 ffile:close()

 if ret then

 ret,msg =

 _activate_file(new, to)

 end

 if not ret then error(msg) end

end

The next function, compare_files(), is used to compare the current con-
figuration file with its former origin in folder CONFIGS/. The function re-
turns true if the content of the file has changed since it was copied from its
origin. If this is the case, we need to save the current configuration before
we switch to a new configuration. The function compares both files by
reading their contents in chunks of 256 bytes and comparing these strings:

function compare_files(n1, n2)

 local f1 = io.open (n1, "rb")

 if not f1 then

 return false

 end

 local f2 = io.open (n2, "rb")

 if not f2 then

 f1:close()

 return true

 end

190 CHAPTER 5 Scripting

 local ret = false

 while true do

 local s1 = f1:read (256)

 local s2 = f2:read (256)

 if not (s1 or s2) then

 break

 elseif s1 ~= s2 then

 ret = true

 break

 end

 end

 f1:close()

 f2:close()

 return ret

end

Now all preparations are done, and we can start to read the INI file. The
configuration counter and the name of the current configuration are set to
default values, and, if the INI file exists, it is read line-by-line using the
io.lines() function. For each line, we run through the functions in table
parser_func and check to see whether a function applies. By now we
should have the current configuration count in the variable ccount and the
current configuration name in the variable config_name:

ccount = 0

config_name = ""

-- ini file parsing

if os.stat(ininame) then

 for line in io.lines(ininame) do

 for _,f in pairs(

 parser_funcs) do

 if f(line) then break end

 end

 end

end

Next, we allow the user to select the configuration to switch to. To do this,
we fetch the list of files contained in the folder CHDK/CONFIGS/. If this folder
does not exist, we just use the empty list.

If the list of files is not empty, we sort the files in alphabetic order to
determine the index of the current configuration, since we want to display
this configuration to the user. Then, in the following while loop, the user
can use the LEFT and RIGHT buttons for scrolling in the list. The SET button
can be used to select a configuration.

5.7 Example scripts 191

When showing a configuration to the user, we display not only its
name, but also its modification date. This makes it easier for the user to
identify the configuration:

-- config selection

files, msg = os.listdir(

 configs,false)

if not files then files = {} end

if #files > 0 then

 table.sort(files)

 local i = 1

 while i <= #files do

 if files[i] == config_name then

 break

 end

 i = i + 1

 end

 while true do

 if i <= 0 then

 i = #files

 elseif i > #files then

 i = 1

 end

 cls()

 print("Press SET to select")

 print("LEFT/RIGHT to scroll")

 print("DISP to abort")

 local fstat = os.stat(

 configs.."/"..files[i])

 local mdate = fstat.mtime

 local s = os.date("%c", mdate)

 print("Switch to: "..

 files[i].." ("..s..")")

 wait_click(5000)

 if is_pressed("set") then

 selected_config = files[i]

 break

 elseif

 is_pressed("display") then

 break

 elseif is_pressed("left") then

 i = i - 1

 elseif

 is_pressed("right") then

192 CHAPTER 5 Scripting

 i = i+1

 end

 end

else

 print(

 "No configs to choose from")

end

Before we switch to the selected configuration, we check to see whether
the current configuration CHDK/CCHDK.CFG is different from the configura-
tion remembered in the INI file. We do this by using the function compare_
files() that we implemented above.

Then we ask the user whether to save the current configuration under
a new name. If yes, we remember this decision in the variable newconf. If no
INI file exists, we save the current configuration by default:

if #config_name > 0 then

 local cpath =

 configs.."/".. config_name

 if compare_files(

 current_config, cpath) then

 changed = true

 print("Save current config?")

 print("SET=yes, DISP=no")

 while true do

 wait_click(5000)

 if is_pressed("set") then

 newconf = true

 break

 elseif

 is_pressed("display") then

 break

 end

 end

 end

else

 newconf = true

end

If the folder CHDK/CONFIGS/ does not exist, we create it. If the current con-
figuration is to be saved under a new name, we increment the configura-
tion counter, construct a new name (confn.CFG), and copy the current
configuration to folder CHDK/CONFIGS/ under the new name. The user may

5.7 Example scripts 193

later want to rename this file (e.g., on a PC) and give it a more meaningful
name:

os.mkdir(configs)

if newconf then

 ccount = ccount+1

 new_name =

 "conf"..ccount..".CFG"

 copy_file(current_config,

 configs.."/"..new_name)

 print("Saved as "..new_name)

end

Now we are ready to switch to the selected configuration. We update the
INI file; if the current configuration has changed or if the user wants to
switch the configuration, we copy the selected configuration file to the
current configuration. So, by not selecting a different configuration file and
pressing SET, the user can reset the current configuration to its initial state.
If the user does not switch or reset the configuration, we simply update the
INI file:

if selected_config then

 write_ini(

 selected_config, ccount)

 if changed or config_name ~=

 selected_config then

 copy_file(configs.."/"..

 selected_config,

 current_config)

 print(

 "Please restart camera")

 shut_down()

 end

elseif new_name then

 write_ini(new_name, ccounend

This script is far from trivial, but it is developed with safety in mind. If
something goes wrong, you can still retrieve a working configuration from
the .BAK files.

Scripts like this are almost impossible to develop without a good debug
environment on a PC. We will discuss this topic in the next section.

194 CHAPTER 5 Scripting

5.8 Script development

Simple scripts can be developed with a plain text editor such as Notepad
and can be tested directly in-camera. For larger scripts, however, this can
become tedious: edit the script on the PC, move the memory card to the
camera, reboot the camera, run the script and find the next syntax error,
move the card back to the PC, correct the error, and so on.

For larger scripts, it is much more convenient to gather some tools that
allow editing within a PC environment. About 80 percent of all bugs can be
caught easily while testing on the PC. After completing these tests, you will
still need to do some testing in-camera—but the cycle will be much shorter.

For uBasic, there is a small integrated development environment (IDE)
targeted at CHDK development. The program UBDB from Dave Mitchell
(www.zenoshrdlu.com/kapstuff/zubdb.html) features a simple editor and
a debugger. The debugger allows you to set breakpoints and step through
a script line by line. Between the steps, you have the ability to change the
values of parameters, variables, CHDK commands (functions), and CHDK
properties, allowing you to test the script under various conditions. UBDB
is written in Java and runs on both Windows and Mac OSX platforms.

Another comfortable editor on Windows platforms is the Open Source
product Notepad++ (http://notepad-plus.sourceforge.net/uk/site.htm).
This editor is free and knows the syntax of many languages, including
uBasic and Lua.

For Lua, several IDEs exist for different platforms. You can find a list of
IDEs under http://lua-users.org/wiki/LuaIntegratedDevelopmentEnviron-
ments.

One of them is the SciTE IDE that comes with the Lua for Windows dis-
tribution (http://luaforwindows.luaforge.net). SciTE integrates a debugger
that allows setting breakpoints and stepping through the script line by
line. However, several difficulties arise when testing CHDK Lua scripts un-
der such an IDE:

 f CHDK commands are not known in a PC environment and will raise
errors.

 f CHDK script parameters defined in the script header are not set be-
cause they are defined within a Lua comment block. All parameters will
have the value nil.

 f In a PC environment, Lua arithmetic is performed with floating point
numbers. Under the CHDK, in contrast, arithmetic is performed with
integers. In particular, the division operator (/)works differently in these
environments: while 3/4 is 0.75 on a PC, it is 0 under the CHDK!

5.8 Script development 195

Figure 5-7

The UBDB debugger in action. Here,

we step through the script from

section 5.7.2. With a double click,

we set a breakpoint on line 72. Clicking

the Step button, we advance one more

line.

Figure 5-8

To allow the script to continue, we

must now change the value of variable

r to 2 so that the script can leave the

while loop. This can be done in the

upper section of the Parameters

window by double clicking the variable

r, then entering 2 into the input field

(top right) and clicking Set.

Alternatively, we can change the result

value of the command get_focus_mode

to 2 and run through the loop one

more time. This can be done in the

middle section of the window by

double clicking the CHDK function

get_focus_mod, then entering 2 into

the input field (center right) and

clicking Set.

196 CHAPTER 5 Scripting

However, all of these problems can be solved so that Lua scripts can be
tested comfortably within a PC environment:

 f The missing CHDK commands can be added as extra libraries to the PC
environment. These libraries will only be included in the script when it
runs on a PC. On the book CD, you will find these libraries in the folder
luaDebug/ under the names chdklib.lua, os_ext.lua, and bit.lua.
Simply place these libraries into the same (PC) folder as your script. By
default, library chdklib.lua is configured for DryOS, but it can easily be
reconfigured for VxWorks (set variable propset to 1).

 f In addition, you must include the contents of the folder CHDK/LUALIB/
in your script folder. At the time of writing, these are the libraries
propcase.lua and capmode.lua, and the subfolder is GEN/.

 f When running a script in this environment, the parameters defined in
the script header are parsed by the library chdklib.lua and assigned to
Lua variables so that the script will run with the same configuration as
under the CHDK.

 f In case of the integer division, you should as a general rule avoid the use
of the division operator (/) and instead use the function idiv(), which
is defined as:

function idiv(a,b)

 return (a-(a%b))/b

end

This function implements an integer division and delivers the same
results on the PC and the CHDK.

All that remains to be done is to add the definition of idiv() and the fol-
lowing statement block to your script:

pcall(function()

 require("chdklib")

 end

)

When the library chdklib.lua is not available (as when running under the
CHDK), this expression does nothing at all. The error condition raised by the
require() command is caught by the pcall() function.

By using this technique, you can conveniently test a CHDK Lua script on
a PC.

6.1 Panoramas 197

6 Advanced Techniques

In the following sections, we will discuss some advanced techniques such
as panoramas and applying High Dynamic Range (HDR) photography to
panoramas and videos. These techniques require a large number of shots
to create just one end result. PC-based tools are required to create these
artifacts, along with lots of patience and dedication.

6.1 Panoramas

 Panorama photography is quite popular and has developed its own follow-
ing within photography. The Web, in particular, has given panorama pho-
tography a new push by allowing the presentation of easily navigable 360°
panoramas. There are commercial applications, too: think of real estate or
tourism.

Panoramas can be created by using different techniques. They can be
cut and pasted from photographic prints, like the collages popularized by
the artist David Hockney. In analog photography, specialized panoramic
cameras were used like the famous Russian Horizon, which has become a
collector’s item. In digital photography, panoramic cameras such as the
160-megapixel Seitz sell for the prize of a mid-sized sedan.

But special equipment is not really necessary to produce good panora-
mas. The stitching programs that exist today are so powerful that you can
easily create your own panoramas with your Canon. All you need is a freshly
loaded battery, sufficient free space on your memory card, patience, disci-
pline, and a few tips like these:

 f A tripod and a remote control (section 4.9) are recommended, but I have
shot acceptable panoramas hand-held. If you use a tripod, you should
also use a spirit level to align it perfectly with the horizon.

 f Zoom out as much as you can. A wide-angle lens position allows you to
do a panorama with only a few exposures. You may want to put your
camera intro portrait orientation, especially if you are doing hand-held
panoramas—you have to consider the later trimming.

 f To avoid later registration problems, you should pivot the camera
around the nodal point, which basically is the center of the lens. But if
there are no subjects at close range, this does not matter as much.

198 CHAPTER 6 Advanced Techniques

Precise turning can be achieved with a nodal point adapter mounted
between tripod and camera. If you want to do multi-row work (for
spherical panoramas), you need a VR head. Several manufacturers offer
such devices; some of them are even motorized. If you use one of these
devices, you must determine the nodal point of your camera at the focal
length that you’re using (because the nodal point moves when zoom-
ing).

To do so, first mount the camera on the nodal point adapter and the
tripod. The adapter allows you to shift the camera forwards and back-
wards. Set up the camera and tripod so that you have both a far and a
near object in the viewfinder. When you turn the camera, the distance
on the screen between both objects must not change. To judge this
distance precisely, you can make a picture and magnify it using the
zoom rocker in replay mode. Should the distance between the two ob-
jects change while turning the camera, shift the camera forwards or
backwards until you find the optimal position. Mark this position for
the next time.

 f Zoom level and focus should be left unchanged for all exposures. For
landscape panoramas, setting the camera to infinity is fine in most
cases. Otherwise, you need to use the Override functions (section 4.3.1)
to dial in a fixed subject distance. A varying subject distance like that
caused by the autofocus system would make it difficult for the stitching
program to join the single exposures.

 f Exposure is often a problem with panoramas, especially on a bright day.
The contrasts can be very high because you cover a large area. Some
photographers use a manually set exposure and keep it constant
through all of the images. In most cases, this will result in overexposed
and underexposed areas. If you want to work in this way, make sure
that you get the highlights right and let the shadows drown.

Personally, I would rather use automatic exposure for each picture
so that the camera can adapt to different lighting conditions. Modern
stitching software can detect these differences (it reads the exposure
data from the EXIF data) and blend the images seamlessly together.
Especially with high-contrast scenes, the results are usually better.
Some stitching software is even able to store the panorama in the form
of a HDR file to keep the full contrast range for later tone mapping (sec-
tion 4.6.2).

What you should do, however, is use the same ISO value for all im-
ages. This will give you a uniform noise level over the whole panorama.

 f Do not use automatic white balance but rather set the camera to a
fixed color temperature, e.g., to Daylight or Cloudy.

 f When turning the camera, allow for sufficient overlapping between the
single images. About one third of each image should overlap with the
previous image. The CHDK offers a great tool to register the single

6.1 Panoramas 199

images precisely, especially when shooting panoramas hand-held: Edge
overlay shows the edges of the previous image on top of the current
viewfinder content (section 4.7 and Figure 4-40).

 f Stitching programs usually accept TIFF and JPEG files. Shooting JPEG is
just fine. If you want to use RAW files for the ultimate quality, make sure
you have enough space on your memory card. Also make sure to de-
velop each RAW file with exactly the same parameters.

After you create a series of panoramic shots, you will need to stitch them
together. There are several programs that can help you in that task. These
programs differ in details, quality, and level of manual control but more or
less keep to the same process:

1. The program searches for prominent points within the single images
(using the SIFT algorithm or a similar algorithm)—points that clearly
stand out and can be used for registering images.

2. The next step is to match the points from the single images. This is
usually done with the RANSAC algorithm. Most of the stitching pro-
grams are able to accept an unordered set of images and will put them
into the right sequence.

3. The single images are shifted, rotated, and stretched to make them fit
together.

4. The single images are further corrected by removing the effects of vi-
gnetting (lens shading), barrel and pincushion distortions, and different
exposures.

5. The single images are fused together. This happens within the overlap-
ping area by choosing a (usually irregular) borderline that is not too
obtrusive. The transitions are softened up, and ghosts within the transi-
tion area are masked out.

There are many commercial panorama stitchers but also some very capable
free programs:

 f First, Photoshop offers Photomerge, an easy-to-use panorama stitcher.
It’s a tool for the quick panorama without too many configuration op-
tions. It’s free, too, as long as you own a Photoshop license.

 f The Microsoft Image Composite Editor (ICE) is similarly easy to use, and
it’s completely free.

 f Autopano Pro from Kolor is a very powerful panorama stitcher. Panora-
mas can be created automatically, but you also have full manual control
over each step. The program can keep the whole contrast range deliv-
ered by the single images and allows storing the panorama as an HDR
file. It can even combine several HDR stacks, resulting in true HDR pan-
oramas (section 4.6.2).

200 CHAPTER 6 Advanced Techniques

 f The same features in Autopano Pro are available in PTGui—one of the
pioneers of panorama technology.

 f Hugin, which doesn’t lack in power, is the free Open Source alternative
for panorama stitchers. It supports HDR panorama stitching and can
also be used for nonpanoramic purposes, such as perspective correction
of architectural shots.

All panorama stitchers allow you to choose among different projections. A
projection is responsible for how the image pixels are mapped onto the
viewing surface—i.e., how they are projected. All programs support at least
rectilinear, cylindrical, and spherical projection. Some of them support
many more and even rather exotic projections.

 f The rectilinear projection simply projects the whole panorama onto a
flat surface. Because this leads to strong distortions towards the edges
of the image (similar to a photo taken with an ultra-wide-angle lens),
the maximum angle of field should be limited to 120°.

 f The cylindrical projection projects the panorama onto the inside of a
cylinder that is then unrolled onto the viewing surface. This projection
and its variants (e.g., Miller projection) are best suited when you want to
print panoramas with a wide angle of field.

 f The spherical or equirectilinear projection projects the panorama onto
the inside of a sphere that is then unrolled onto the viewing surface.
This projection is typically used for spherical panoramas viewed on a
computer display using interactive viewers.

Viewers for spherical panoramas are available as a Java applet or as a Flash
application. Apple Quicktime can show panoramas, too. Among the Java-
based viewers, the free PTViewer is interesting. It can handle cylindrical and
spherical projections and also display true HDR panoramas (see next sec-
tion) with the full contrast range. When the user changes the angle of view,
the viewer will adapt to the brightness of the scene, much as the human
eye would do. For Flash, there are many commercial offerings for panorama
viewers plus the notable exception of the panoSalado viewer that comes
for free.

6.2 HDR Panoramas

We have already mentioned one of the problems in panorama photogra-
phy: the large scene contrast. When the sun is shining and the angle of
view is 180° or greater, you will have images that are shot with the sun in
the back and images shot straight into the sun. But contrast at night can
also be too high for a classical exposure.

6.2 HDR Panoramas 201

In section 4.6.2 we already discussed how to create an HDR series with
the help of the CHDK. Basically, you can use the same technique for each
single image of the panorama:

 f First, go to ALT > MENU > Extra Photo Operations and select Off for
Disable Overrides.

 f Then go to ALT > MENU > Extra Photo Operations > Bracketing in Continu-
ous Mode and dial in a TV Bracketing Value. For normal bracketing work,
a good value is 2 Ev, but for panorama work a bit less will make the
registration of images easier. As Bracketing type choose +/–, a typical
set-up for HDR stacks.

 f Finally, switch the camera’s shooting mode to Custom Timer and config-
ure the timer with a delay of 0 sec and the number of shots set to 3 or 5,
depending on the contrast in the scene.

 f Now, when you press the shutter button, you should get one correctly
exposed picture, one overexposed picture, one underexposed picture,
and so on.

After you set up the camera in this way, you can take the images for the
panorama (don’t forget to set a fixed ISO value and a fixed white balance).
Press the shutter button, wait for the images to be taken, turn the camera,
press the shutter button again, etc. A tripod is recommended but not abso-
lutely necessary. Make sure to use fresh batteries and a memory card with
enough free space.

Let’s assume that the focal length of your camera lens is equivalent to
35mm at a wide-angle setting. If you’re using the camera in portrait mode
with an overlap of one third between each panorama part, you can cover
an angle of view of approximately 25 degrees. For a single row panorama,
this would result in 15 parts of three images each, or 45 total images. Even
if you shoot JPEG, you would end up with approximately 120 MB. Shooting
RAW would fill your memory card with approximately 450 MB! Multiple
row panoramas, such as those required for 360° spheres, take a multiple of
that value.

Combining the image series into one HDR panorama can be performed
with a suitable panorama stitcher. Autopano Pro, PtGui Pro, and Hugin can
all compose HDR panoramas. The output can be saved in an HDR file format
such as OpenEXR or HDR Radiance. The resulting file can then be tone
mapped using an HDR composer (e.g., Picturenaut, Photomatix Pro, FDRTools
Advanced, or Dynamic Photo HDR) to produce printable HDR output.

Example project
The following image (Figure 6-1) demonstrates the use of panorama tech-
niques to solve a problem often encountered by owners of compact

202 CHAPTER 6 Advanced Techniques

cameras: the lack of interchangeable lenses. Most compact cameras allow
for a wide-angle zoom position of 35mm focal length (35mm equivalent),
some even down to 28 mm. But when compared with the ultra-wide-angle
lenses available for DSLR owners (24 mm down to 12 mm equiv.), one can
only feel envy.

With panorama techniques, you can simulate an ultra-wide-angle lens.
Instead of using a cylindrical projection, you use an equilinear projection
when stitching the images. The image in Figure 6-1 consists of nine single
shots, three shots in three rows. The camera was a Canon Digital Elph
SD1100 at a wide-angle setting (equiv. 38 mm). Because the contrast range
was rather high, I decided to use HDR bracketing as well, with three images
per shot, and a Tv Bracketing value of 2 EV. This resulted in 27 single images.

In such a case, you should consider selecting the next lower image reso-
lution. Some HDR tone mappers cannot handle images that are too large,
and processing times can become excessive. The images delivered by the
panoramic stitcher can be very large, indeed! Because I had taken the im-
ages at full resolution, I scaled them down afterwards to 1600x1200 pixels.
The images were then composed in Hugin with virtually no manual adjust-
ments. The only thing I had to do was supply a format factor of six manu-
ally. (Hugin proposed a wrong format factor because of the extra scaling
process.) Also, I set the projection to rectilinear, the exposure optimization
to HDR, and the output format to HDR. The resulting image had a horizon-
tal angle of 125° (145° in the diagonal). The simulated focal length was
7 mm (35mm equivalent), a value DSLR owners can only dream of. The re-
sulting EXR file was then opened with Picturenaut and tone mapped using
the bilateral method.

Figure 6-1

Breuburg Castle, Germany.

Even after some heavy cro pping,

the image still has a horizontal angle

of 88° (98° in the diagonal).

6.3 HDR videos 203

6.3 HDR videos

Some users have created HDR time-lapse videos with their Canons. The
technique is quite sim ple: set the camera to bracketing mode and config-
ure the Custom Timer as discussed in section 6.2. Then use any time-lapse
script that can press the shutter button in defined intervals, such as the
script developed in section 5.7.1. Again, be sure to have fresh batteries and
rather large memory cards on hand (see appendix A.1 for running the
CHDK with memory cards larger than 4 GB).

The resulting bracketing series must be processed with an HDR com-
poser. The composer should be able to combine images in batch mode1.
Make sure that tone mapping is performed with the same parameters for
each bracketing series. The result should be stored in the form of JPEGs
that are then combined into a movie with a time-lapse converter (section
5.7.1).

1 Photomatix Pro, FDRTools Advanced, Dynamic Photo HDR all have batch
facilities.

204 CHAPTER 6

7.1 Installing the SDM 205

7 The Stereo Data Maker (SDM)

In the past, finding the right CHDK version was sometimes a disturbing
experience because of the many different builds (identified by numbers)
and spin-offs such as the Allbest build, Fingalo’s build, and Microfunguy’s
SDM build. Different people had different ideas, wanted to try them out,
and therefore created spin-off versions of the CHDK. By now, most of this is
history. The new functions implemented in the various spin-offs have been
imported into the main CHDK trunk (called the Morebest build), so we have
one unified release. Almost, that is.

The SDM (Stereo Data Maker) has survived and has its own community
of users. The SDM is a lightweight version of the CHDK, removing some
rarely used functionality but adding other functions. As the name sug-
gests, it provides additional functionality for stereo (3D) photography such
as camera synchronization. But in fact, the SDM is not used dominantly for
that kind of photography. Because of its excellent remote control features
and its integration with external devices, it is quite popular in the KAP (Kite
Aerial Photography) community.

7.1 Installing the SDM

The SDM can be downloaded from http://stereo.jpn.org/eng/sdm/index.
htm. The website lists the models and firmware versions that are sup-
ported—not as many as the original CHDK, but still quite a number. Your
first step should be to determine whether your camera is supported by the
SDM and what the firmware version of your camera is. We have already
shown how this is done in chapter 3.

Afterwards, download the file common_files.zip. Unpack this file into a
suitable folder on your computer. You can now use the program sdminste.
exe found in the ZIP file to install the SDM. This SDM Installer is capabable
of formatting your card and making it bootable but will only run under
Windows. If you are using a different operating system, please refer to sec-
tion 3.4 on how to create a bootable card without the help of a PC-based
program.

You should, of course, first backup your memory card. Afterwards, switch
the write protection off and insert the card into a card reader. Make sure
that there is no other removable media online so that it’s not accidentally

206 CHAPTER 7 The Stereo Data Maker (SDM)

reformatted during the following process. Then start sdminste.exe and
format the card with FAT, not FAT32 (assuming that your card has no more
than 4 GB capacity). After formatting the card successfully, click the button
Make bootable Disk.

Now you can transfer the folders CHDK/ and DCIM/ from the SDM deploy-
ment onto the card. These folders contain the language files (English,
Spanish, French, Hungarian, and German), several predefined grids (section
4.2.6), a font, and some useful scripts (motion detection, remote control,
time lapse). If you need a larger variety of fonts, you can use the fonts de-
ployed with the “normal” CHDK (they are compatible) and place them into
the folder CHDK/FONTS/.

The SDM deployment also contains a folder with predefined SDM con-
figurations. These configurations are meant to help you set up a pair of
cameras for stereo photography:

 f If your cameras will be mounted on a Z-frame (section 7.7.4), copy file
CONFIGS/config_eng/L/CHDK.CFG into folder CHDK/ on the memory
card used for the left camera. The file CONFIGS/config_eng/R/CHDK.CFG
goes into folder CHDK/ on the memory card for the right camera.

 f If your cameras will be mounted on a U-frame (section 7.7.4), copy file
CONFIGS/config_eng/L_horizontal/CHDK.CFG into folder CHDK/ on the
memory card used for the left camera. The file CONFIGS/config_eng/R/
CHDK.CFG goes into folder CHDK/ on the memory card for the right
camera.

Figure 7-1

The SDM Installer in action

7.2 Restrictions 207

It’s a good idea to mark your cards with a large “L” and a large “R” respec-
tively.

After these common files are installed, it’s time to download the cam-
era and firmware-specific SDM core from http://stereo.jpn.org/eng/sdm/
index.htm. This download contains a single file, DISKBOOT.BIN. Copy this
file into the root directory of your memory card.

Now, remove the card from the card reader, switch on the write-protec-
tion, and insert the card into the camera. When you start the camera, you
should see the SDM splash screen.

7.2 Restrictions

We have already mentioned that the SDM is based on a lightweight CHDK
variant. Some CHDK functions have been removed. In many cases, these
functions are not really needed for photography. For example, the calendar
and the four games have been omitted from the SDM.

Unfortunately, there is also true photographic functionality that is
missing—and your only option is to go back to the CHDK if you require that
functionality. For example, the SDM has only limited RAW support. In par-
ticular, it cannot create DNG files (section 4.5.2). In-camera development of
RAW files is missing, too, and curves are not supported.

In regard to scripting, the SDM supports its own uBasic dialect (section
7.9). Because some CHDK uBasic commands are not supported by the SDM,
not every script can be ported to the SDM. Scripting with Lua is not sup-
ported at all.

7.3 Additional functions

On the other hand, the SDM introduces so many useful functions that you
might want to switch to the SDM now and then. It might be a good idea to
keep two memory cards, with the CHDK on one and the SDM on the other.

In particular, the SDM improves onion skinning (overlaying two pictures)
by allowing overlays to be viewed as red/cyan anaglyphs. This is possible
both in color and black-and-white. Of course, this feature is designed for
 stereo photography, but it can also be useful for controlling panorama or
 bracketing series. Simply go to Replay mode, half-press the shutter button,
move to the next image with the RIGHT button, half-press the shutter
button again, and you will see both images either side-by-side or overlaid
as a red/cyan anaglyph, depending on your settings.

Time-lapsing is also made easy with a single, powerful uBasic command
that allows you to create highly sophisticated time series. A script version
of that command is already contained in the deployment so it can be

208 CHAPTER 7 The Stereo Data Maker (SDM)

readily executed. This feature and the excellent remote features (including
support for the Ricoh CA1 remote control) are the reasons why the SDM has
so many users in the KAP community. However, recent versions of the
CHDK have adopted the SDM remote functions and offer almost the same
functionality.

A specialty of the SDM is the use of the blue LED as a serial interface to
hook up external devices, such as motorized camera rigs or robotic pan-
orama heads. Finally, a recently introduced feature of the SDM is the sup-
port of Digiscoping, i.e., connecting a camera to a telescope.

7.4 Operation

Using the camera under the SDM is quite similar to using it under the
CHDK. There is an <Alt> mode which you can enable via the ALT button
(chapter 4). Pressing the MENU button in <Alt> mode leads to the SDM
menu.

The various indicators are also organized differently. There is an SDM
 header line showing several entries, such as shooting mode, zoom value,
and focal distance. You can configure this line under ALT > MENU > Stereo >
SDM Header.

Many functions are invoked through key shortcuts instead of menu
entries. For example, enabling or disabling Overrides is performed by half-
pressing the shutter button and pressing FUNC/SET. An indicator at the left
side of the display shows MAN when Overrides are enabled, and OFF when
Overrides are disabled.

Here are some more key shortcuts. They are worth remembering be-
cause they can make life easy. However, you can always look them up with
the Text File Reader (ALT > MENU > Advanced Menu > Text file reader > Open
new file…). File CHDK/TEXTS/SHORTCUT.TXT lists all of these shortcuts.

In Record mode, the following key shortcuts are available:

 f ALT-MENU: Invokes the SDM menu.

 f ALT > FUNC/SET: Switches the OSD on/off with a short click on FUNC/
SET. A longer press switches the Edge Overlay on/off.
Note: This key combination is used in standard CHDK for loading a
script. Under the SDM, you must use the menu function ALT > MENU >
 Scripting > Load script from file…, instead.

 f ALT > LEFT: Browses OSD information screens backwards. These screens
display vital data for different purposes such as digiscoping or stereo
set-up organized in multiple pages.

 f ALT > RIGHT: Browses OSD information screens forwards.

Figure 7-2

The SDM main menu looks different

compared to the CHDK menu because

the already well-known functions are

grouped differently.

7.5 Remote control 209

If the camera is set to manual focusing with ALT > MENU > Brackt/Over-
ride > Focus mode to Manual, the above shortcuts are interpreted differ-
ently1:

 f ALT > LEFT: Focuses nearer

 f ALT > RIGHT: Focuses farther

 f ALT > UP: Infinity

 f ALT > DOWN: Hyperfocal distance

When focusing with these keys, observe the SDM header line to see how
the focal distance changes. The changes become effective immediately, and
you can observe how the area of sharpness changes on the display. However,
the dialed-in focal distance is only used in the next shot if the Overrides have
been enabled (see above). Otherwise, the camera will refocus.

In Play mode, the following key shortcuts are possible:

 f ALT > FUNC/SET: Switches Remote Browsing on/off with a short click on
FUNC/SET. A longer press switches the USB Upload function on/off.

 f ALT > LEFT: Browses OSD backwards.

 f ALT > RIGHT: Browses OSD forwards.

 f Half-press shutter button: Shows red/cyan overlay of left and right
image. On the S2 IS, S3 IS, S5 IS, and A550, use the FUNC/SET button
instead (section 7.6).

There are a few more shortcuts listed in file SHORTCUT.TXT that apply to
specific situations. Don’t forget to press the ALT button again after using a
 command sequence starting with ALT. Otherwise, you will still be in <Alt>
mode and your next shutter button press will probably start a script in-
stead of take a picture.

7.5 Remote control

In contrast to the CHDK, the SDM switches on the USB remote control by
default. All you need to do is plug in the remote control unit. Two different
remote systems are supported:

 f The Ricoh CA1 remote control and compatible models. The switch of
this unit works in three stages: (1) When the button is half-pressed, the
camera focuses. (2) When the button is fully pressed, the camera mea-
sures the exposure. The blue LED indicator is lit when the camera is

1 Switching between these two modes requires at least a half-press of the
shutter button after the focus mode is changed.

210 CHAPTER 7 The Stereo Data Maker (SDM)

ready to shoot. (3) When the button is released, the camera fires. It is
possible to combine steps (1) and (2) by full-pressing the button once.

 f A simple switch-and- battery remote control as shown in section 4.9.2.
(1) Press the button for less than half a second to focus. (2) Press the
button again to determine the exposure. The blue LED indicator will be
lit when the camera is ready to shoot. (3) Release the button to shoot. It
is possible to combine steps (1) and (2) by pressing the button for lon-
ger than half a second, waiting on the blue LED, then releasing the
button.

This mode of operation is true for the “normal” camera mode, also called
the DIRECT mode (you may have wondered what the DIRECT indicator in
the SDM header line means). In this mode, a photo is taken when the
switch is released.

In FAST mode, in contrast, a photo is taken as soon as the switch is
pressed. The FAST mode is entered automatically when ALT > MENU > Brackt/
Override > Focus mode is set to Manual or to Digiscop.

The remote system can be configured with the same parameters as
shown in section 4.9.3. Since this functionality was adopted by the CHDK
from the SDM, there are almost no differences between the versions. The
menu is structured differently, and the names of some menu items are
different. For example, the CHDK option Enable Remote Zoom is called
Synch Zoom in the SDM and is located in the Stereo submenu. The reason is
obvious: controlling the zoom function through the remote control allows
for synchronized zoom operation when two cameras are connected to the
remote control. This is an ideal way to set up twin cameras for stereo pho-
tography.

The other remote parameters are located in the submenu Stereo >
Synchronization. There is one more parameter that is not present in the
CHDK: Add User and flash delays. This option can be enabled to facilitate
synchronized flash (section 7.7.5). For each camera, a special delay value
(depending on the shutter speed) is computed and added to the delay
values dialed in by the user.

Figure 7-3

The SDM Synchronization submenu.

The functionality is nearly the same as

in the CHDK, only the SDM allows for

a dding extra flash delays.

7.6 Communications 211

7.6 Communications

In this section, we will discuss the camera uplink to a PC as well as serial
communication with an external device.

7.6.1 USB upload

Because the USB port, by default, is reserved for the remote control, you
must explicitly disable the option ALT > MENU > Scripting > Disable USB
Download if you want to upload (or download, depending on your angle of
view) images onto a PC. Of course, the camera must be switched to Replay
mode when uploading images.

The SDM upload functions are designed to work closely together with
the WIA Loader (www.mortara.org/index.php/software/windows/49-wia-
loader), a Windows (.NET) based image uploader. (On Linux and MacOS X, it
can run under the Mono-Framework 2.4.) The WIA Loader can, for example,
take care of stereo image pairs from twin cameras (section 7.7.4). It can
rename such images, place them in left and right folders, and rotate im-
ages losslessly if one camera is mounted upside down in a Z-frame.

Because transmission takes place through the USB port, the card can
remain in the camera. This has advantages in that the camera doesn’t need
to be removed from an elaborate set-up and that the card is never forgot-
ten in the computer. The WIA loader can even automatically remove trans-
mitted images from the card. Because the SDM allows uploading images
via script commands (section 7.9), you can (almost) simulate tethered
shooting—at least for time-lapse operation. After an image has been
taken, the interval between two pictures can be used to upload the image
to the connected PC. And because the WIA loader can also delete the image
from the card, it never runs out of capacity.

7.6.2 Serial communications

Not only can the SDM communicate with a PC, it also offers the possibility
of using the blue LED as an optical serial port. A light-sensitive cell glued to
this LED and connected to a microcontroller (or to the sound card of a PC) is
all the hardware required for receiving data from the camera. A set of script
commands (section 7.9) is available to initialize the interface and to send
data to the connected external device. The device can even acknowledge
the successful reception by sending a signal to the V+ pin (supply voltage)
of the camera’s USB port (ALT > MENU > Scripting > Disable USB Download
must be enabled). This is not absolutely necessary but leads to more reli-
able communication.

212 CHAPTER 7 The Stereo Data Maker (SDM)

Transmission begins by sending a start bit with a pulse width of 4. 24
data bits (3 bytes). A 0-bit is encoded with a pulse width of 1, a 1-bit with a
pulse width of 2. The space between two bits has the length of one pulse.
After the bit sequence, a space with a pulse width of 3 follows. Then the
above sequence is repeated. The receiving device should compare both se-
quences, and in the case of equality, acknowledge successful reception at
the USB port. In the case of inequality, no action needs to be taken—the
SDM command for receipt at the USB port will simply time out.

The pulse width can be set in ALT > MENU > Advanced > Serial Comms
and should be between 10 msec and 20 msec. At the beginning of a com-
munication, a script will typically send a reference pulse (command unit_
pulse) that allows the external device to calibrate to that pulse width.
Because the real pulse width differs from the specified value (depending on
the camera’s processor), the menu offers the ability to fine-tune the pulse
width. This is done by trial and error, or by analyzing the signals with an
oscilloscope2.

This serial communication facility is typically used for controlling exter-
nal devices with a camera script, such as robotic camera platforms or rigs.
An interesting project for building a DIY panoramic robot head is found on
www.instructables.com/id/Camera-Panorama-robot-head-panograph/.

Of course, it is also possible that an external device will send more data
to the camera’s USB port than a simple receipt. Such data can be encoded
with pulses of varying width and interpreted with the help of the script
command get_usb_power (section 5.5.10).

7.7 Stereo photography

The SDM was designed for stereo photography. When we look at nature to
see how 3D vision works, we soon find that in almost every case two im-
ages taken at different positions are compared with each other. For exam-
ple, humans have two eyes set at a distance of approximately 70 mm apart.
Our eyes compare images simultaneously, allowing us to perceive move-
ment in space very well.

Other animals have eyes that are oriented sidewise. In that case, it is
often impossible to compare the images from both eyes simultaneously
because each eye sees a different part of the scene. Instead, such animals
compare images obtained before and after a movement. Take, for example,
a chicken: a first look, a quick move of the head, then a second look. The
faster the head moves, the better the comparison between images works.
Now you know why a chicken walks like a chicken.

2 The Visual Analyzer from www.sillanumsoft.org teamed with the sound
card of your computer makes a capable and free oscilloscope.

Figure 7-4

The Serial Comms Data submenu

controls the pulse width for serial

communications via the blue LED.

7.7 Stereo photography 213

7.7.1 Stereo photography with a single camera

What works for a chicken can work for us, too. It isn’t really necessary to use
two cameras for creating stereo images. If the subject matter doesn’t
move, you can obtain good results by using a single camera: take the first
shot, move the camera a bit to the right, and take the second shot. This
method is particularly suitable for macro stereo photography. In macro
photography, the shift between the left and the right image must be quite
small—so small that it’s impossible to mount two cameras side by side
without exceeding the optimal distance between the two lens centers.

Shifting a single camera, however, sounds easier than it is. It can be
quite hard to make both images register correctly, especially when shoot-
ing hand-held. The SDM offers (just like the CHDK) the Edge Overlay as an
aid:

 f First, switch on the Edge Overlay by clicking the ALT button and then
pressing the FUNC/SET button for a second. You should now see a no-
tice such as “Allocated xxxxxx bytes”. Press ALT again to leave the <Alt>
mode.

 f Press the shutter button a first time. The Edge Overlay should appear
now in the form of bright yellow lines. Also, the message “frozen” is
shown.

 f Move the camera a bit to the right, but not too much. Use the distance
between your eyes as a guide and also see below. For macro work you
can choose a much smaller distance, and for landscape work you can
exaggerate the 3D impression by choosing a larger distance.

 f Now register the camera so that the edges of the nearest subjects
match. The difference between the edges of the farthest objects (devia-
tion) should not exceed two millimeters on the screen (assuming a
display width of approximately two inches).

 f Take the second shot.

 f Now switch to Replay mode. Navigate to the first (left) image and half-
press the shutter button3 to select it. Then navigate to the second (right)
image and half-press the shutter button again. The display should now
show a red/cyan overlay of both images (anaglyph). If you have your
red/cyan goggles with you, you can view the image in 3D right away.
Under ALT > MENU > Stereo > Playback mode you can choose between a
monochrome anaglyph, a color anaglyph, or a side-by-side pair.

The main purpose of this display option is, however, to check the
registration of both images. If you want to magnify the anaglyph, you
must first zoom in on the left image, half-press the shutter button, then

3 On the S2 IS, S3 IS, S5 IS, and A550, use FUNC/SET instead of the shutter
button half-press.

214 CHAPTER 7 The Stereo Data Maker (SDM)

 zoom out, navigate to the right image, zoom in again, and half-press the
shutter button. Working in this way, you can control the registration of
images very precisely.

Note: this display function does not work on all cameras. On some
cameras, the odd/even position of the images in the browsing sequence
can prevent the creation of the anaglyph. If this is the case, you should
shoot a spare image before shooting the stereo pair. If the anaglyph
creation fails, you can delete the spare image and try again.

While the above method works well for mid-range shots, a closer analysis
is required for close-up work. If you register both shots for a very close ob-
ject, the deviation for far objects may become too large. (Above, we allowed
for a maximum on-screen deviation of 2 mm.) When you look at the com-
posite image later, your brain may be unable to cope with such a large de-
viation and both images will fall apart.

To help you with the problem of determining the right deviation, the
SDM offers a tool for computing the maximum acceptable deviation be-
tween the positions of the farthest objects. The following method is based
on measuring the exact distance of near and far objects. This is done at the
telephoto position of the zoom lens in order to obtain precise readings.
From the measured distances, the maximum deviation value is computed
and visualized on the display.

 f Set the camera’s AF mode to Center.

 f Under ALT > MENU > Stereo > Camera Spacing, dial in the distance that
you want the camera to shift between both pictures. Typical values here
are 60–70 mm for mid-range work and 10–20 mm for close-up work.

 f In the same menu, set the Twin-Cam position to L (left) and the Cam
orientation to H (horizontal) or V (vertical), depending on the camera
orientation.

 f By repeatedly pressing ALT > LEFT or ALT > RIGHT, browse the SDM OSD
pages until you reach a screen entitled “SINGLE CAMERA”. Press ALT
again to leave the <Alt> mode.

 f Zoom to the longest telephoto position (do not use digital zoom). This
is mandatory! Focus on the nearest object and half-press the shutter
button. The entry “Near” in the OSD screen will be updated. It will turn
red if the subject distance is below the near limit. This near limit is a
result of multiplying the values dialed in under Near-subject factor4 and
Camera Spacing. The Near-subject factor specifies how much perspec-
tive distortion is acceptable to you when the camera viewpoint changes
(Figure 7-7). The smaller this value, the better the quality of the
compound image, but the larger the near limit will be.

4 Typical values are 30 for mid-range work and 15 for close-up work.

Figure 7-5

The SDM Stereo submenu combines

the settings relevant to stereo

photography. It includes submenus for

Camera Synchronization (Figure 7-3)

and Edge Overlay.

Figure 7-6

The Single Camera OSD allows

capturing both far and near distance,

and computes a shift value that must

be entered under Deviation factor in

the Stereo submenu. Here, the value is

too small (the minimum deviation

factor is 10) because the lens is still in

telephoto position. Zooming out will

make the “Shift” value bigger.

7.7 Stereo photography 215

 f Still in telephoto position, focus on the farthest object and half-press
the shutter button. The entry “Far” will be updated.

 f Zoom back to the desired zoom position. The value of entry “Shift” will
change with the focal length.

 f Dial in the resulting “Shift” value under Deviation factor. The image
pixel width divided by the Deviation factor determines the maximum
deviation in pixels for later viewing.

 f Now you are ready to display the guidelines. First, disable the option
Disable deviation guideline. Also set the Twin-Cam position to R.

 f Then go to ALT > MENU > Advanced Menu > OSD parameters > Grid set-
tings. Enable the option Show grid lines and invoke the function Load
grid from file… to load Deviation_H.GRD (DEVIAT~1.GRD on DryOS).

o2

o1
a b

c1 c2

Figure 7-7

Close-up work and stereo photography

have their own problems. Here are two:

camera c1 sees object o1 from a

different perspective than camera c2.

c1 sees more of edge a while c2 sees

more of edge b. Object o2 is so close

that it is only seen by camera c2. It will

appear as a ghost. In both cases,

reducing the distance between the

cameras or increasing the subject

distance will help.

Figure 7-8

The grid Deviation_H.GRD in action.

The horizontal lines can be used for

orientation and alignment. The

distance between the vertical line in

the center and the deviation line at the

right indicates the maximum

acceptable deviation.

216 CHAPTER 7 The Stereo Data Maker (SDM)

 f You can now use the Edge Overlay to register the nearest objects. The
 Deviation Line at the right-hand side of the grid’s centerline shows the
maximum deviation that is allowed for far objects. If this distance is
exceeded, you should reduce the camera spacing and redo the above
steps.

Unfortunately, this method does not work in all cases. Especially in macro
mode, your camera might not be able to focus at close distance while the
lens is in telephoto position. The SDM, on the other hand, can only capture
distances in telephoto position.

In this case, you are thrown back to using some old, well-known rules
for computing Camera Spacing and Deviation factor:

 f For close-up work, the Camera Spacing should be lower than the dis-
tance between the lens and subject divided by 20. So, when your sub-
ject matter is 30 cm away from the lens, you should use a Camera
Spacing of less than 15 mm.

 f For “normal” subject distances, the Camera Spacing should be lower
than the distance to the nearest point of the subject divided by the EFL
(35mm equivalent focal length) plus 20%. For example, if the distance
to the nearest point is 3 m, and the current EFL is set to 50 mm, an ac-
ceptable Camera Spacing would be 3000 / 50 + 20% = 72 mm.

 f The Deviation factor should be, in most cases, between 25 and 30. The
lower the value is, the larger the maximum acceptable deviation dmax
will be, and the more difficult the viewing experience will be. The max-
imum acceptable deviation is computed by dividing the image width by
the deviation factor. After entering this factor, you can control the ac-
tual deviation with the grid Deviation_H.GRD and the Deviation Line as
described above.

If you want to play safe, you can “bracket” the Camera Spacing, e.g., by
following the “thirds” method (Figure 7-9). Later, when combining the im-
ages, you can select the best pair for achieving the desired 3D effect.

cc/3 2*c/3

1 2 3 4Figure 7-9

Given the computed camera spacing c,

four shots are sufficient for coverin g a

stereo basis between c/3 and 2*c. By

selecting two shots from this series,

you can decide between c/3 (1+2),

2*c/3 (3+4), c (2+3), 4*c/3 (1+3), 5*c/3

(2+4), and 2*c (1+4).

7.7 Stereo photography 217

7.7.2 Producing and viewing composite stereo images

Once you have created pairs of stereo photos, you may want to compose
them into a single file so that they can easily be deployed and viewed. One
program that can do exactly that is StereoPhotoMaker, which is available
for free on the Web (http://stereo.jpn.org/eng/stphmkr). If you are inter-
ested in stereo photography, it is also worth visiting the parent page (http://
stereo.jpn.org/eng) for even more tips and tools.

Simply download the ZIP file and extract it into a folder of your choice.
To align the stereo pairs automatically, the StereoPhotoMaker needs an
additional component5, the free program Autopano from http://autopano.
kolor.com/. Unzip the downloaded ZIP file and copy autopano.exe into the
installation folder of the StereoPhotoMaker. This program is good enough
to correctly align images that are shot hand-held.

After installation, simply start the StereoPhotoMaker with a double-
click. Then you can drop a pair of stereo images into the image area, invoke
Adjust > Auto align, and then invoke one of the Stereo > Gray Anaglyph or
Stereo > Color Anaglyph functions. Press Enter for full screen view, turn
down the room light, put on the red/cyan 3D goggles6, and your computer
screen becomes 3D. With File>Save Stereo image, you can save the anaglyph
to a new file that can be viewed with any image viewer. StereoPhotoMaker
can, of course, do much, much more, but this is the shortest way to your
first 3D photo. Not only red/cyan goggles are supported, but also 3D shut-
ter glasses that synchronize your view with quickly alternating left/right
images on the screen. Another option for producing 3D images is the
AnaglyphMaker from www.stereoeye.jp/software/index_e.html.

7.7.3 Stereo focus stacking

A problem with close-up stereo photography is the narrow depth of field.
In contrast, when you view a scene, your eyes scan it and adapt to the vary-
ing distances. Your brain does the composition.

We already know that we can do something similar with focus stacking
(section 4.6.3). The question is: can we combine this technique with stereo
photography? Yes, we can—focus-stacked 3D is possible and does, in fact,
enhance the 3D impression. First set up your camera (or your cameras) for
stereo work. If your camera has a manual focusing mode, switch it on. Then
go to ALT > MENU > Brackt/Override, enable the entry Focus override, choose
an appropriate Focus step-size, set the Focus mode to Manual, and select

5 The same componenent is used in the Hugin panorama stitcher (section
6.1).

6 You can easily make 3D glasses yourself. See www.videojug.com/film/how-
to-make- 3d-glasses.

218 CHAPTER 7 The Stereo Data Maker (SDM)

under Bracketing type the number of images that should go into one focus
stack. Then return from the <Alt> mode and set your camera’s shooting
mode to Continuous. Shoot the required number of images, shift the cam-
era, and shoot the next series.

When composing the image, first perform the focus stacking for the
left and the right images separately. The two resulting images are then
combined with the StereoPhotoMaker.

7.7.4 Synchronized cameras

After you whet your appetite by taking stereo images with a single camera,
you might want to consider acquiring a second camera. Your best option is
to buy a camera of the same type (it’s always good to have a backup). The
advantage is that taking stereo photos with two cameras is much more
convenient than with a single camera, and you can take stereo images of
moving objects, too. The SDM can synchronize two cameras down to
1/16,000 of a second, so your subjects can move very fast indeed.

Triggering
Synchronization can only be achieved by triggering both cameras at the
same millisecond. Special remote controls are required. If you are happy
with the simple remote control presented in section 4.9.2, you can easily
solder a second mini- USB plug to the first one. This will do the trick.

Figure 7-10

This image was composed of 2 x 5

images. Focus stacking was performed

with CombineZP; the resulting images

were then composed into an anaglyph

with the help of StereoPhotoMaker. The

nearest point to the subject matter

was approximately 27 cm, and a

 camera spacing of approximately

15 mm was used, a bit more than what

was required. Although the foreground

is not completely sharp (some more

images would have been needed for a

larger depth of field), the resulting 3D

impression is very strong when viewed

with red/cyan goggles (a color version

for viewing is found on the book web

site at www.photozora.org/cchm/)«.

Canon Digital Elph SD1100 IS, 38 mm,

f/2.8, 1/100sec, ISO 400.

7.7 Stereo photography 219

If you don’t want to do any soldering, you can acquire a ready-made
unit. For example, gentStereo from Gentles Limited allows you to control
two or more cameras simultaneously. Similarly, the SDM Canon USB remote
from digi-dat can fire up to 12 cameras simultaneously. Or you can use the
 Ricoh CA1 remote control with a mini-USB/mini-USB Y-Cable Charger
Adapter.

In any case, when you want to trigger two cameras synchronously, you
must enable the synch mode on both cameras with ALT > MENU > Stereo >
Synchronization > Enable synch. The SDM header line will display “Synch:”
followed by the specified delay value (see below). From now on, you should
operate the camera only via the remote control. Pressing the shutter but-
ton directly will disable the sync mode!

Calibration
Exact synchronization is only achieved when both cameras have exactly
the same delay time between USB signal and shutter release. Two cameras
of the same model should have approximately the same delay times, but
when using different models, differences in delay times can be consider-
able. Fortunately, you can assign a different delay time to each camera in
ALT > MENU > Stereo > Synchronization > User delay.

Finding the right delay intervals can be tricky. If you still have a CRT
monitor (or if you can borrow one or cheaply pick one up at Ebay), you can
use the Camera Sync Tester from www.3dtv.at/Knowhow/Synctest_en.aspx
to determine the differences between the delay intervals of two cameras.

If not, you can simultaneously shoot the turntable of a power drill with
both cameras. If the drill turns with 3000 rpm, a difference of one degree in
the position of the turntable is equivalent to a delay of 1/18,000 sec
(0.06 ms). A power hand blender with its higher speed (Figure 4-23) would
be even better. By overlaying both pictures, you can determine the differ-
ence between the two cameras quite precisely.

Mounting
The simplest solution for joining two cameras is to mount them on a plain
bar. The bar can have a simple design, and by default the lens centers are
aligned to the same height.

A better mount, however, is the Z-frame. The cameras are mounted
side-by-side with one camera turned 180°. The advantage of this frame is
that—because most cameras are asymmetrically built—the lenses can be
mounted closer together, resulting in a lower near limit. Typically, Z-frames
are built with a special camera model in mind so that the lens centers are
aligned.

220 CHAPTER 7 The Stereo Data Maker (SDM)

If you are skilled, you can build such bars by yourself. You can certainly find
instructions on the Internet, for example at http://3dbruce.blogspot.com/.
Another option is to acquire a ready-made bar from a manufacturer, for
example at www.digi-dat.de/index_eng.html.

Finally, if you want to shoot in portrait orientation, you need a U-frame
to mount both cameras.

The SDM supports all of these mounts. Under ALT > MENU > Stereo > Cam
orientation, you will find the options H (for a horizontal mount), V (for a
90-degree mount), and I (for a 180-degree mount). Under ALT > MENU >
Stereo > Cam rotated, you will find the options L (to the left) and R (to the
right). For each mode, the camera will present the SDM menus and the
SDM OSD with an appropriate rotation (0, 90, 180, 270 degrees). Even the
LEFT, RIGHT, UP, and DOWN buttons are swapped accordingly. The native
camera menus, however, will remain unchanged.

You also have to identify the position of each camera under ALT >
MENU > Stereo > Twin-Cam position with L for left and R for right. Some
 functions will behave differently for left and right cameras.

You can get all of this set up for you by using one of the ready-made
 configurations (section 7.1) contained in the SDM distribution.

Registering
Registering two cameras is, of course, a bit different than working with a
single camera. For example, you will not be able to use the Edge Overlay or
to view the result as a composite anaglyph on the camera display. The two
cameras simply cannot exchange their image data. However, we can rely
on grids and on the deviation indicator. The rules used for determining the
 Camera Spacing and the Deviation Factor are the same as when working
with a single camera:

 f Set the camera’s AF mode to Center.

 f Under ALT > MENU > Stereo > Camera Spacing, dial in the distance be-
tween the lens centers of both cameras.

 f In the same menu, specify a preferred Deviation factor (section 7.7.1).
The maximum acceptable deviation dmax is computed by dividing the
image width by the deviation factor.

Figure 7-11

The Z-frame can be used to mount two

cameras as close together as possible.

7.7 Stereo photography 221

 f By repeatedly pressing ALT > LEFT or ALT > RIGHT, browse the SDM OSD
until you reach a screen entitled “ TWIN CAMS”.

 f Zoom to the telephoto position (mandatory!). Focus on the nearest
object and half-press the shutter button. The entry “Near” in the OSD
screen will be updated. It will turn red if the subject distance is too near
(section 7.7.1).

 f Now focus on the farthest object and half-press the shutter button. The
entry “Far” will be updated.

 f Now zoom back to the desired zoom position. The calculated deviation
(in mm) is displayed in the entry Deviation. This value is the maximum
deviation required for the current scene (based on the captured dis-
tances). It should be lower than dmax. A horizontal bar graph shows the
Deviation value as a percentage of dmax. If the bar graph is red, the
Deviation value is too big (more than 100% of dmax). In that case, you
should consider zooming out more or moving farther away from the
subject.

 f Now you are ready to display the guidelines. First, disable the option
ALT > MENU > Stereo > Disable deviation guideline on both cameras. Also
on both cameras, go to ALT > MENU > Advanced Menu > OSD parame-
ters > Grid settings. Enable the option Show grid lines and invoke the
 function Load grid from file… to load Deviation_H.GRD (DEVIAT~1.GRD
on DryOS), align the centerline of the left camera with a significant
point on the nearest object. Do the same with the centerline (the left of
the two lines shown) of the right camera. Next, align the centerline of
the left camera with a significant point on the farthest object and do
the same with the right line (deviation indicator) of the right camera.
The left camera does not show a deviation indicator.

7.7.5 Synchronized flash

When working with a twin camera set-up, it is also possible to use the
built-in flash units of both cameras. To enforce identical exposure settings
on both cameras, it is necessary that both cameras do fire the flash. All you
have to do is:

 f Set up both cameras as twin cameras as usual. Also enable the option
ALT > MENU > Stereo > Synchronization > Add User and flash delays.

 f If you use Overrides (section 4.3.1), use the same Tv values (shutter
speeds) for both cameras. If the cameras are set to automatic exposure,
the cameras will set the exposure time to 1/60 sec.

 f Turn the flash on (AUTO or ON) on both cameras. If your cameras
support second-curtain mode for flash, be sure to set the flash to first-
curtain mode.

Figure 7-12

The Twin Cams OSD. Below the

Deviation entry is the bar graph that is

within limits. If it were not within

limits, the bar would be red and you

would need to zoom out, increase the

distance to the subject, or reduce the

spacing between the cameras.

222 CHAPTER 7 The Stereo Data Maker (SDM)

 f When using the Ricoh CA1 or a compatible remote control, first half-
press the button of the remote control to focus. Then press the button
fully. The cameras will fire the preflash to determine the exposure. Wait
until the blue LED indicates “ready to shoot”. Then release the button to
fire.

 f When using a simple switch-and- battery remote control, press its but-
ton for less than half a second to focus. Then press the button again to
fire the preflash. Release the button after the blue LED indicates “ready
to shoot”, and the camera will fire.

Only the flash of the right camera is fired with full power. The power of the
left flash is reduced by four f-stops in order to avoid double shadows.

7.8 Digiscoping

Digiscoping is the technique used to connect a digital camera with a tele-
scope. It is particularly popular among bird and other wildlife watchers.
Compact cameras are well suited for that purpose and allow for an afford-
able digiscoping solution. The SDM supports digiscoping with various
features:

 f Even cameras that do not feature a manual focusing mode can be fo-
cused on the virtual image projected by the telescope.

 f The camera is switched to FAST mode so that it immediately fires the
shutter when the switch of the remote control is pressed (you will work
with tripod and remote control when digiscoping).

 f The camera display is not darkened by the nonactivity timeout (impor-
tant for wildlife photography).

 f Focus bracketing is supported. This can be very useful because the
Depth of Field (DOF) is very small.

Before setting up the SDM for digiscoping, set the time-out value for the
display to more than one minute. This allows the SDM to stop the camera
from timing out at all. Cameras with manual focus mode must be switched
to this mode. Then invoke the submenu ALT > MENU > Advance Menu > Digi-
scope. Fill in the specifics of your telescope:

 f Objective dia. The diameter of the front telescope lens.

 f Scope focal length. The focal length of the telescope in mm.

 f Eyepiece focal length. This is the focal length of the telescope divided by
the magnification.

 f Camera zoom setting. The zoom step to be set up at the camera. Widest
angle is 0, next step is 1, etc. When starting to shoot, the camera will
automatically zoom to this preset value.

Figure 7-13

The Digiscope Data submenu

7.8 Digiscoping 223

 f Focus ref distance. The distance of the virtual image projected by the
telescope lens and the subject distance to which the camera will focus.
500 mm is a good starting point.

After you have entered these values, you can review them in Record mode
using the DOF browser (ALT+LEFT/RIGHT).

 f Scope mag. The magnification of the scope.

 f Scope EP. Diameter of the scope’s exit pupil in mm. This entry will be red
when it is the limiting aperture (smaller than the camera’s entrance
pupil).

 f Camera EP. The diameter of the camera’s entrance pupil in mm. This
entry will be red when it is the limiting aperture (smaller than the
scope’s exit pupil).

 f EFL. The combined focal length of camera and scope.

 f EFL (35mm). The 35mm-equivalent of EFL.

It’s a good idea to use focus bracketing in connection with digiscoping.
First, it increases the tolerance for focusing. Also, the series of images ob-
tained can be combined via focus stacking (section 4.6.3) in order to in-
crease the depth of field. With digiscoping, the DOF is notoriously small, so
focus stacking can make a lot of sense.

 f In the Brackt/Override submenu, set Focus mode to Digiscop. This will
cause bracketing around the preset Focus ref distance. The step size will
also depend on this value: the lower the Focus ref distance, the smaller
the focus step size.

 f Set Tv bracket value to Off.

 f Choose any value from 3 times to 19 times in entry Bracketing type.

 f Exit <Alt> mode and set the camera to Continuous mode or to Custom
timer (with an appropriate number of shots).

Of course, the scope must be mounted on a sturdy tripod. The camera must
be mounted on the same tripod, so you need some kind of a bracket (digi-
scoping adapter) on which both scope and camera can be mounted and
adjusted. The ideal adapter would allow swinging the camera quickly out
of place (for access to the ocular) and swinging it back again without com-
promising stability. Such adapters are not cheap—they may even cost more
than your camera. For the occasional shot, however, this low-cost and low-
tech version may be an alternative:
www.videojug.com/webvideo/how-tomake-a-digiscoping-adapter.

You also need to trigger the camera with the help of a USB remote
control. Because the Digiscop focusing mode switches the camera to FAST
mode, the camera will fire immediately when you press the switch instead
of waiting for switch release. If you don’t have a remote cable, you could

Figure 7-14

The DOF browser showing the

Digiscope Data. The entry Camera EP

is colored red, indicating that the

camera’s entrance pupil (Camera EP)

is the limiting aperture. In the ideal

case, it will match the Scope EP.

224 CHAPTER 7 The Stereo Data Maker (SDM)

use the Custom timer with a few seconds delay to fire the camera (obvi-
ously not an option for action shots). Anything else will lead to shattered or
unsharp images.

After setting up your tripod and camera, you should carefully focus the
camera/scope combination. This is done with the help of the scope’s focus
control while looking at the camera display. For better control, you may want
to switch the camera’s screen magnifier on. In the native camera menu, set
the AF Frame to Center and the AF-Point Zoom to On. Upon half-pressing
the shutter button, the center AF frame is enlarged—but only if this area is
sharp enough. So the AF-Point Zoom can act as an in-focus indicator.

7.9 Scripting

Not all uBasic commands and not all CHDK commands are supported by
the SDM. For example, the SDM does not know the uBasic instruction
select (section 5.3.5) or the CHDK command get_display_mode (section
5.5.8).

On the other hand, the SDM introduces a large number of new com-
mands. Some of them are synonyms of existing CHDK commands. Their
only rationale is to make the script more readable. For the same reason, it
is also possible to omit the print command and simply write a string into
a script line. For example:

"Hello SDM!"

will output

Hello SDM!

on the camera’s display. Other commands simplify tasks that would need
elaborated scripts in the CHDK, especially in the areas of bracketing, time
lapsing, and communications. And, the SDM can do one thing that is not
(yet) possible in the CHDK at all: switching between photo and video mode.

The following is a small sample script that waits on a signal from the
 USB port (from a remote control, an RC wireless, a microcontroller, etc.) and
then shoots a movie for the specified number of seconds:

@title Movie

@param t Duration(sec)

@default t 5

"Waiting on Remote"

wait_for_switch_press

"Shooting movie"

"Please stand by"

shoot_movie_for t

end

7.9 Scripting 225

The SDM has also found a way around the slow speed of uBasic scripts. In
the CHDK, each script line (except comment lines) is executed in a new
time unit (10 msec). With the SDM, you can control the speed of execution.
The command:

set_script_speed s

accepts a value between 1 and 5, determining the number of script lines to
be executed within one time unit if physically possible. This setting can be
retrieved with:

get_script_speed s

SDM scripting can be quite different from CHDK scripting, and many CHDK
scripts will not run under the SDM without modifications. Fortunately,
there is an SDM version of the UBDB debugger (section 5.8), the SDMUBDB
that can be downloaded from www.zenoshrdlu.com/kapstuff/zsdmubdb.
html. So you can do the testing and the script conversion conveniently on a
PC.

 Button-related commands

take_photo_now

Identical to shoot (section 5.5.1).

shoot_movie_for s

Switches to Movie mode, records a movie for the specified time (seconds), and then
returns to Record mode.

wait_for_switch_press

Waits until a signal is present on the USB V+ pin (section 4.9.2).

 Exposure-related commands

 nd_filter_off

nd_filter_in

nd_filter_out

Identical to:

set_nd_filter 0, set_nd_filter 1, set_nd_filter 2 (section 5.5.2).

226 CHAPTER 7 The Stereo Data Maker (SDM)

Focus-related commands

get_focused_distance d

Identical to get_focus (section 5.5.3).

set_focus_to d

Identical to set_focus (section 5.5.3).

get_focus_ref p

set_digi_focus_ref_to

Retrieves and sets the focus position used by the digiscoping function (section 7.8).

lock_autofocus

unlock_autofocus

Identical to set_aflock 1 and set_aflock 0 (section 5.5.3).

 Zoom-related commands

set_zoom_to_step z

set_zoom_to z

Identical to set_zoom (section 5.5.4).

 Bracketing-related commands

save_stack

Creates a log file in folder CHDK/STACKS recording the focus or Tv values of a bracket-
ing series. It should precede any other bracketing command.

each_photo_alternating

each_photo_darker

each_photo_lighter

Used before an exposure (Tv) bracketing sequence is started. This only works with the
Custom Timer. The Continuous Shooting mode always alternates.

 hdr_bracket_1/3_ev_steps s

Used to set the step width for exposure (Tv) bracketing in 1/3 EV (f-stops).

 auto_focus_bracketing

Sets up the camera for a focus bracketing sequence to take a sequence of images
starting at a defined subject distance and ending at infinity. The steps increase with
distance. Cameras with manual focus must be in manual focusing mode. Also, the
Custom Timer or the Continuous Shooting mode must be active.

7.9 Scripting 227

 equal_step_focus_bracketing

Sets up the camera for a focus bracketing sequence, but with fixed focus steps begin-
ning at a start subject distance. This is typically used for focus stacking in macro
mode. Cameras with manual focus must be in manual focus mode. Also, the Custom
Timer or the Continuous Shooting mode must be active.

set_focus_step_to

Sets the size of the focus step used by the command equal_step_focus_bracketing.

digiscope_bracketing

Enters the bracketing mode for Digiscope mode (section 7.8). The camera will focus
before and behind the virtual image of the scope. Cameras with manual focus must
be in manual focusing mode. Also, the Custom Timer or the Continuous Shooting
mode must be active.

number_of_images_to_capture_is n

Specifies the number of images in bracketing mode.

start_continuous_sequence

end_continuous_sequence

Starts and ends a bracketing series when the camera is in Continuous mode.

start_custom_timer_sequence

Starts a Tv or focus bracketing series when the camera is in Custom Timer mode. The
series will end after a given number of images have been taken. The number of im-
ages is specified in the Custom Timer under Shots.

bracketing_done r

Returns 1 when the bracketing series is complete.

wait_until_done

Waits until a series of photos taken with the Custom Timer or under the Continuous
mode has been completed.

Time-related commands

sleep_for t

sleep_for_msecs t

Identical to sleep (section 5.5.7).

sleep_for_seconds s

Equivalent to sleep s*1000

sleep_for_minutes m

Equivalent to sleep m*60000

228 CHAPTER 7 The Stereo Data Maker (SDM)

end_time h,m

finish_time h,m

Specifies a time of day when an operation should end. Must be specified before
sleep_until or start_time. Currently, only the command time_lapse supports this
feature.

sleep_until h,m

start_time h,m

The camera waits until the specified time of day (h = hours, m = minutes). During that
time the screen is darkened.

time_lapse a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r, s, t, u

Starts a time-lapse series. This command is the core of the time-lapse script con-
tained in the SDM distribution. Here, it can be called as a command from another
script.

Parameters:

a First delay minutes

b First delay seconds

c Shoot interval minutes

d Shoot interval seconds

e Number of repeats

f 1 = endless mode (e ignored), 0 = limited by parameter e

g 0 = single, 1 = continuous, 2 = custom timer, 3 = burst

h Number of exposures for Tv bracketing

i Number of exposures for focus bracketing

j 0 = Tv bracketing, 1 = focus bracketing, 2 = both

k 0 = lighten, 1 = darken, 2 = alternate

l Tv bracketing step in 1/3 EV

m 0 = equal step focus bracketing, 1 = autofocus bracketing, 2 = Digiscope bracket-
ing

n Focus step in mm.

p Digiscope focus distance

q 0 = don’t blank screen, 1 = blank screen

r 0 = don’t shutdown, 1 = automatic shutdown after required number of pictures,
2 = shutdown by USB signal

s 0 = don’t save bracketing stack, 1 = save bracketing stack

t 0 = no sunrise, 1 = sunrise mode. The Sunrise menu controls exposure and num-
ber of images when set to 1.

u 0 = use TXT format for sunrise log, 1 = use CSV format for sunrise log

7.9 Scripting 229

Data transmission-related commands

enable_usb_download

disable_usb_download

By default, USB download (upload) is disabled, so that the camera can react to a USB
 remote control. By enabling the USB upload and switching to Playback mode, a peer
program running on a PC (such as the WIA loader) will start and open a connection.

make_usb_connection

Switches to Playback mode and opens a USB connection for upload.

break_usb_connection

Closes the USB connection and switches back to Record mode. The peer program on
the PC must have already closed the connection.

upload_images_for t

Switches to Playback mode and opens a USB connection for the specified time. Then it
closes the USB connection and returns to Record mode. Can be used in combination
with the WIA loader (section 7.6) for uploading images at regular intervals.

unit_pulse

Generates a single pulse on the PRINT LED. Typically used to calibrate the connected
external device (section 7.6).

send_data a, b, c

Sends three bytes of data to an external device by flashing the PRINT LED (section
7.6). The external device acknowledges the correct reception by sending a signal to
the USB V+ pin. The values a, b, and c should be in the range of 0.255.

data_received a

Used after send_data to wait for an acknowledgement by the external device on the
USB port. Waits for 100 msec and returns 1 if a signal is received at the USB V+ pin
within that time. Returns 0 otherwise.

LED and sound-related commands

 af_led_off

af_led_on

Identical to set_led 9, 0 and set_led 9, 1. (section 5.5.8). Be careful with the
af_led_on command—the AF LED is probably not built to be illuminated for a long
period of time.

blink_af_led_for t

Blinks the AF LED for the specified time t (seconds). Typically used for kite aerial
photography (KAP) because the AF LED can be seen from some distance.

 blue_led_off

blue_led_on

Identical to set_led 8, 0 and set_led 8, 1 (section 5.5.8).

230 CHAPTER 7 The Stereo Data Maker (SDM)

beep

Identical to playsound 4 (section 5.5.8).

Camera state-related commands

lcd_on_off

Toggles the on/off state of the camera display. This does not work on all cameras.

turn_backlight_off

turn_backlight_on

Identical to set_backlight 0 and set_backlight 1 (section 5.5.8). Works on all cam-
eras.

get_shooting_mode r

Identical to get_shooting (section 5.5.10).

movie_mode

Switches the camera to movie mode (except on cameras with a separate MOVIE
 button).

playback_mode

Switches the camera to Playback mode.

record_mode

Switches the camera to Record mode.

get_sync a b c d

set_sync a b c d

Retrieves and sets the SDM synchronization state: Parameter a goes into Enable Synch
(1 = enable, 0 = disable), parameter b goes into Enable Synch delay (1 = enable, 0 = dis-
able), parameter c goes into User delay (in 0.1 msec), parameter d goes into Coarse
delay (in 0.1 sec) (section 4.9.3).

sync_on

sync_off

Enables/disables the Enable Synch option (see set_sync above).

8.1 Kite Aerial Photography 231

8 Kites, Balloons,
and Multikopters

Despite its name, the Stereo Data Maker is probably most often used for
Kite Aerial Photography (KAP) and other kinds of remote aerial photogra-
phy. In particular, its excellent support for remote operation, time lapsing,
and the integration of external devices via a serial interface has gained the
 SDM a good reputation in the KAP community.

The original version of the CHDK is also used often for remote and unat-
tended operation. In particular, its support for the Lua scripting language
makes it suitable for very sophisticated applications. For example, one of
the weather balloon missions mentioned in the introduction of this book
used a slightly modified version of the original CHDK. A Lua script handled
the scheduling of both photo and video operations, as well as a shutter-
priority exposure control.

8.1 Kite Aerial Photography

In Kite Aerial Photography (KAP), a camera is lifted by a kite and takes pho-
tographs autonomously or when triggered by a remote control. Small,
lightweight cameras such as the Canon Digital Elph SD (Ixus) series are ideal
for KAP. Nearly any stable single-line kite design can be used to lift such a
lightweight camera. An interesting option for KAP—although expensive—
is the Helikite from Allsopp Helikites Ltd., a combination of a helium-filled
balloon and a kite. The advantage of this design is that it can be operated
in both windless and very windy conditions, so you don’t have to rely too
much on the weather—quite important for the professional photographer.

Typically, the camera is mounted on a rig which is suspended some-
what below the kite. By means of gravity, the rig and the camera are kept
aligned with the horizon. There is still some movement, but less than there
would be with a camera directly mounted to a kite. Nevertheless, short
 shutter speeds are recommended, and the camera’s Image Stabilizer (IS)
can also help.

In its simplest form, the camera is mounted directly on the rig in a fixed
position and performs the operations autonomously controlled by a time-
lapse script. The script should allow for an initial delay, so that the kite can
reach its working height before operation starts.

232 CHAPTER 8 Kites, Balloons, and Multikopters

Alternatively, the camera can be controlled from the ground. A very
simple (but sometimes awkward) solution is a thin pair of wires connected
to the USB port of the camera (section 4.9). A more comfortable solution is
a radio-controlled (RC) system. One solution is to let the RC system trigger
the camera mechanically (via a servo operating the shutter button). A more
elegant solution is to replace the servo with a device converting the RC
signal into a USB pulse. Devices such as the gentled chdk2 even allow (by
means of two RC channels) operating up to six configurable camera func-
tions (e.g., shutter, zoom, exposure, focus, etc.). Advanced RC systems such
as the DuneCam from Dunehaven Systems can even relay the display image
back to the ground unit, thus giving the photographer some feedback.

A more advanced method to mount the camera is a rig that can rotate
the camera vertically and horizontally with the help of servos. Some can even
rotate the camera along its optical axis and can thus change the camera’s
orientation from landscape to portrait. The servos are usually controlled via
the RC system but can also be controlled via the camera’s serial interface
(blue LED) as provided by the SDM (section 7.6). Another option is using an
external controller such as the Automatic Rig Controller (AuRiCo) that can
control both the rig and a CHDK-enabled camera through the USB port.

Especially when shooting video, the motion of the rig can become an-
noying to the viewer. Most of this motion can be cancelled out by using
Gyro Servos (again from Dunehaven) instead of normal servos to control the
rig. Small on-board gyroscopes measure the movements of the rig and ad-
vise the servos to counteract those movements.

8.2 Balloon-based photography

While KAP is dominated by dedicated amateurs, professional photogra-
phers often turn to balloons as camera platforms. A balloon is not as de-
pendent on the weather and is easier to control. When carrying a large
professional camera, the balloon, of course, needs to be quite large—and
the helium will be expensive, too. But with a small digital compact camera,
the demands on the balloon are minor and balloon photography can be
done at an affordable scale. Even a stack of cheap party balloons could do
the job. Nevertheless, transport and storage of balloons remains a chal-
lenge if you don’t want to refill the helium for each mission.

Except for the balloon, all of the other required components (such as
rigs and RC systems) are the same as for KAP photography.

A different category is balloon-based photography in high altitudes, as
mentioned in the introduction to this book. In this case, there are additional
requirements: the equipment must be protected against cold temperatures,
and you must provide a way to safely retrieve the camera, such as a para-
chute and a tracking device.

8.3 Motorized flying platforms 233

8.3 Motorized flying platforms

Other flying platforms are usually motorized and include RC-controlled
model airplanes and helicopters. For photography, RC-controlled paraglid-
ers are an interesting option. They fly more slowly and give you more time
to take pictures. Normal aircraft, in contrast, require lots of attention dur-
ing flight. Taking pictures at the same time can be quite demanding—it
can be a job for two people, one acting as pilot, the other as photographer.

 Multikopters are in a different league altogether; they are floating air-
bound working platforms for all kinds of tasks. Examples are the Mikro-
Kopter DIY project (www.mikrokopter.de/ucwiki/en/MikroKopter) and its
commercial cousin, the AirRobot. Multikopters can operate autonomously
or be RC-controlled. Each device consists of an array of vertically oriented
propellers (3–8) powered by lithium-polymer accumulators. Sensors and a
control unit keep the craft stable in the air; the device can even autono-
mously follow a predefined path guided by GPS. Once positioned over an
object or a scene, the photographer can concentrate on taking photos—
the Multikopter takes care of itself.

With all motorized crafts, there is the problem of vibration. It is neces-
sary to choose a short shutter speed and to use shutter priority exposure
control. On small diaphragm-less cameras such as the Canon Digital Elph
(Ixus) that are not equipped with such a mode, this can be achieved by
using a script (section 5.7.4). Also, it will probably be necessary to switch
the Image Stabilizer (IS) off because it usually worsens the problem. In any
case, tests should be made to find out the best shutter speed and whether
the image stabilizer can remain active or not.

8.4 Other unattended operations

The remote operation of a camera is not limited to kites and other airborne
vehicles. Any kind of remote-controlled vehicle can be used as a camera
platform—on land, sea, in the air, or in space. Often such vehicles are used
to take pictures in areas where humans can’t go or areas that are too dan-
gerous.

Unattended operation is not only useful for mobile platforms but also
for stationary use. Surveillance is one application area. The camera is in-
stalled in a certain position and takes pictures at regular intervals or when
triggered by motion. Multishot techniques are also candidates for auto-
mated shooting sequences. The creation of large panoramas such as
 Gigapixel images can and should be performed autonomously by the cam-
era in combination with a robotic panorama head. The creation of time-
lapse videos is another candidate for unattended operation. Shooting
hundreds of pictures manually is simply too boring and too error-prone.

234 CHAPTER 8 Kites, Balloons, and Multikopters

When such missions last for a long time, it is necessary to evaluate the
power supply and provide the camera with external power, e.g., from a ve-
hicle’s batteries. A voltage regulator is needed to match the supply voltage
with the voltage required by the camera. Also needed is a way to feed the
current into the camera. A simple solution is salvaging a cheap replace-
ment battery and connecting its contacts with the output of the voltage
regulator. Alternatively, a dummy battery pack can be made from card-
board using paperclips as contacts. In a similar way, it is possible to supply
the camera with current from the USB port of a notebook computer or
from a solar panel. Most stationary-mounted cameras, however, can be
supplied with current from an AC outlet by using the standard AC power
supply unit from the camera manufacturer.

If the camera is not accessible, it is worthwhile to install a backup bat-
tery, too. If the power shuts down due to a supply current dropout, there is
no way to turn the camera back on again—except, perhaps, via a robotic
arm that presses the power button. Also, before a mission, make absolutely
sure the Auto Power Down function of your camera is switched off.

If the camera is running on its own battery, power saving is essential. In
most cases, the camera display is not used during the mission, so the dis-
play backlight can be switched off. If the script operating the camera does
not switch the backlight off, you can insert a spare AV plug into the cam-
era’s AV OUT terminal, which will switch off the display backlight.

Another problem is that after a shorter or longer period of time, the
 memory card will be full. Exchanging the memory card can sometimes be
cumbersome. Basically, there are two options to solve the problem. If the
camera can be connected to the USB port of a nearby PC, the images can be
downloaded to the hard disk of the PC by using the SDM in connection with
the WIA loader (section 7.6). The other option requires a suitable Wi-Fi
hotspot, a Wi-Fi router, or a Wi-Fi enabled computer nearby. If this is avail-
able, the camera’s memory card can be exchanged against an Eye-fi card.
The Pro version of this card can hook into different wireless networks and
upload images to a photo-sharing site on the Web or to a computer.

9.1 Canon EOS CHDK 235

9 A Look across the Fence

The success of the CHDK seems to have a ripple effect. Owners of other
cameras start to ask: w hy can’t I get something like that for my camera? In
fact, quite a few similar projects exist by now—projects that are targeted
at cameras other than the compact models from Canon. Some are still in
their infancy, but others already have deliverables.

9.1 Canon EOS CHDK

Currently, the CHDK only works on Canon Powershot and Digital Elph (Ixus)
cameras. However, some people have started to port the CHDK to Canon
EOS cameras such as the EOS 40D. So stay tuned. Information is available at
http://chdk.wikia.com/wiki/Category:DSLR.

9.2 Canon 5D as a professional movie camera

Using DSLRs as professional movie cameras is not a bad idea at all. These
came ras are able to deliver video in HDTV quality with up to 24 frames per
second and more. They have interchangeable lenses, and the standard
focal length is similar to that of traditional movie cameras—so you get that
classic movie look with its rich tonal range and well-controlled depth of
field. For example, close-up shots of actors with a very unsharp and quiet
background (Bokeh) are typical. Last, but not least, DSLRs are a LOT cheaper
than professional movie cameras.

One of the cameras suitable for movie work is the Canon 5D Mark II, a
full frame (35mm) DSLR. This camera is subject to the project Magic Lantern
(hosted at http://magiclantern.wikia.com). The project aims to enhance
the 5D with some missing features required for serious movie work, such
as:

 f On-screen audiometers

 f Manual gain control for audio with no AGC, resulting in less audio noise
and less hiss

 f Zebra mode for exposure control

 f Crop marks for 16:9, 2.35:1, 4:3 and any other format

236 CHAPTER 9 A Look across the Fence

 f Control of focus and bracketing in video mode

 f Scripting using the PyMite (a Python subset for microcomputers) script-
ing language

The software is readily available for the 5D, and a new version for the 7D
has been announced.

9.3 Pentax hacks

The Pentax Hack project (http://pentax-hack.info) is still in the early stages
of analyzing the camera’s native firmware. The project is targeted at the
Pentax K10D/K20D and Samsung GX10/GX20 cameras.

A.1 Using cards with more than 4 GB capacity 237

Appendix

A.1 Using cards with more than 4 GB capacity

Using very large memory cards can sometimes be necessary when doing
video or time-lapse work where the camera runs unattended, and it is in-
appropriate to change the card frequently.

The simplest option is to launch the CHDK manually after each camera
start with the function Firm update… as outlined in section 3.4. This should
work for most cameras.

The trouble begins, however, if you want to use the AUTORUN feature.
Partitions with more than 4 GB size MUST be formatted with FAT32, and
the CHDK does not boot from FAT32. The trick here is to run two partitions.
The first partition is formatted with FAT16 and is quite small: 2 MB is suf-
ficient. This partition only contains two files: DISKBOOT.BIN and PS.FI2. All
other files and folders are stored on the second partition that occupies the
rest of the memory card and is formatted with FAT32.

Unfortunately, only a few cameras support multipartitioned cards. For
supported cameras, you will find the two entries Create card with two parti-
tions and Swap partitions under ALT > MENU > Miscellaneous Stuff. With
these menu functions, you can format a large card with two partitions1:

1. Install the CHDK on the card in the usual way. Load the CHDK with the
function Firm update… as outlined in section 3.4 and make a backup of
your card.

2. Now invoke the function ALT > MENU > Miscellaneous Stuff > Create card
with two partitions. This will create a FAT16-formatted partition of
2 MB.

3. Copy the files DISKBOOT.BIN and PS.FI2 to this small partition.
4. Load the CHDK again using the function Firm update…
5. Invoke ALT > MENU > Miscellaneous Stuff > Swap partitions to hide the

first partition and make the second partition visible.
6. Now format the card again. This will only format the second, large par-

tition. Because this partition is larger than 2 GB, it will be formatted
with FAT32.

1 The process reminds me a bit of the wolf-goat-cabbage-riddle: You have to
bring all three safely to the other shore, but your boat will only take one of
them.

238 APPENDIX

7. Copy the CHDK files DISKBOOT.BIN and PS.FI2 onto this partition, too,
so that later we can also boot from this partition. By now, we should
have the CHDK on both partitions.

8. Load the CHDK again using the function Firm update…
9. Now perform ALT > MENU > Miscellaneous Stuff > Swap partitions again

to make the first, small partition visible.
10. Invoke the function ALT > MENU > Main Menu > Miscellaneous stuff >

Make card bootable to enable the AUTORUN function. This will make
the first partition bootable.

11. Write-protect the card and switch the camera on again. It should now
perform an AUTOSTART from the first, small partition. When the CHDK
detects a second partition formatted with FAT32, it will switch all ac-
cess functions to the second partition. Until the next start, the first,
small partition will not be used again.

There is one more problem when you want to exchange files with a com-
puter running under Windows. Windows can only see the first partition. To
make your files accessible to Windows, you must first swap the partitions
via ALT > MENU > Miscellaneous Stuff > Swap partitions. Afterwards, you
must swap partitions again—to do so, you may need to boot from the
FAT32 partition using the function Firm update….

A.2 Troubleshooting 239

A.2 Troubleshooting

Problem: After invoking the CHDK menu or one of its submenus, the menu
sometimes vanishes after a few seconds.
Cause: The CHDK menu is overwritten when the native firmware updates
the information on the screen. This happens, for example, shortly after
start-up when the display is in the “no information” mode. It also happens
in Replay Mode when you change the orientation of the camera, or when
you switch camera modes. In all of these cases, the native firmware re-
paints the screen and the CHDK menu is destroyed.
Workaround: All buttons remain operational. Simply press the UP or DOWN
button and the CHDK menu should reappear.

Problem: When running a script, the message “assert failed—game over!”
appears and the camera shuts down.
Cause: Some script commands have brought the camera into an illegal
state. The camera shuts down in order not to damage any hardware.
Solution: Check the script. Consider using simulated key presses instead of
changing the camera state directly with commands such as set_zoom.

Problem: Script execution fails with an “Out of memory” message.
Cause: One possible cause is that the Edge Overlay feature is enabled and
has allocated memory for the overlay image.
Solution: Go to the submenu Edge overlay and disable the Edge Overlay
feature. Also, invoke the menu function Free internal Memory to release the
allocated memory.

Problem: The camera shuts down every time you switch it on.
Cause 1: You called functions from the Debug menu in an improper way.
Solution 1: Restore the file CHDK/CCHDK.CFG from a backup or delete it. You
will lose all configuration changes applied past the last backup.
Cause 2: You enabled the Autostart option in the Script menu. The current
script is faulty and causes the shutdown.
Solution 2: Edit the configuration file CHDK/CCHDK.CFG with the configura-
tion editor CFGEDIT.jar (see section 4.12). Then reset the Autostart option.

Problem: The camera hangs and does not react to key presses.
Cause 1: Possibly a bug in the CHDK.
Solution 1: Remove the batteries, wait for 10 seconds, then insert them
again and restart. If the problem persists, reinstall the CHDK. Consider us-
ing a more recent version of the CHDK.
Cause 2: You are using a wrong CHDK version.
Solution 2: Make sure to use the correct version matching both camera
model and the camera’s firmware version (section 3.2).

240 APPENDIX

Problem: You have found a bug in the CHDK.
Solution: First check to see if the bug persists in the newest version of the
CHDK. If yes, and if you have access to another camera, find out if the bug
is specific to a certain camera model or not. Then file the bug in the Mantis
bug tracking system (http://chdk.kernreaktor.org/mantis). Before you do,
please check to see whether a similar bug is already filed there.

A.3 Web links 241

A.3 Web links

Official CHDK website: http://chdk.wikia.com From here you can download
the different CHDK builds and get access to all kinds of tutorials, scripts,
and other resources.

CHDK Forum: http://chdk.setepontos.com/ Discussion forum for CHDK-
related themes.

Omgili Aperture Chdk: http://omgili.com/aperture-chdk Another CHDK-
related discussion forum.

Camera Features: http://chdk.wikia.com/wiki/CameraFeatures This page
lists findings about the different cameras supported by the CHDK, such
as longest exposure time, fastest shutter speed, highest aperture value,
lowest and highest ISO, fastest motion detection response, and more.

Motion detector speed test: http://dataghost.com/chdk/md_meter.html
Site for testing the speed of motion detectors.

Muttyan’s home page: http://stereo.jpn.org/eng/index.html Site dedicated
to stereo photography, featuring many stereo-related software products
including the StereoPhotoMaker and the StereoDataMaker (SDM).

This is IT!: http://home.hccnet.nl/s.vd.palen/index.html Home of the
PhotoLapse time-lapse video composer.

 KAP and CHDK/SDM Java Utilities: http://www.zenoshrdlu.com/kapstuff/
zchdkstuff.html Site featuring the UUDB und SDMUUDB debuggers for
 uBasic as well as the CHDK configuration editor.

CHDK for balloon photography: http://www.francescobonomi.it/ballon-
photography-CHDK Documentation about a balloon-based space mis-
sion with a CHDK-enabled camera.

MikroKopter: http://www.mikrokopter.de/ucwiki/en/MikroKopter Official
site for the MikroKopter flying camera platform.

dng4ps: http://code.google.com/p/dng4ps2/ Home of the DNG4PS (DNG
for Powershot) converter.

Magic Lantern Firmware Wiki: http://magiclantern.wikia.com Site for Canon
5D conversion (section 9.2).

Pentax Hack: http://pentax-hack.info/index.html Official site for the en-
hancement of Pentax DSLRs.

Hack a Day: http://hackaday.com/category/digital-cameras-hacks/ All
kinds of (hardware) camera and equipment hacks.

242 APPENDIX

A.4 Contributing to the CHDK

The CHDK is a large community effort, and there are many ways of contrib-
uting to this project. It doesn’t have to be core development—there are
many other areas where you can contribute. People who adapt the CHDK
to a new camera are always needed. Each year, Canon comes out with a
bunch of new models that are not yet supported by the CHDK.

Besides the camera itself, the first thing required for porting the CHDK
to a new camera is a dump of the native camera firmware. This may be easy
to obtain by using CardTricks (section 3.2) for dumping directly from the
camera. For many cameras, however, it may be necessary to use a hard-
ware-based method and dump the firmware through the blue LED. De-
tailed instructions for different firmware dumping methods are found at
http://chdk.wikia.com/wiki/Firmware_Dumping.

In the next steps, the firmware is analyzed. The hooks where the CHDK
can lock in must be found. Some of these hooks must be searched for
manually by inspecting the code. Others can be found with the help of a
tool, Signature finder (finsig/gensig). The mapping of keyboard functions
to buttons must be adapted for the specific camera model, too.

You should have basic knowledge of the C programming language and
the ARM assembler language if you want to take on such a task. Because all
CHDK functions must be tested on the new camera, some time and effort
are required. For more information, please see http://chdk.wikia.com/wiki/
Porting_the_CHDK.

There are other areas, too, where contributions are welcome. Improving
the documentation, writing tutorials and articles, implementing tools and
utilities, and last but not least, creating novel and useful scripts, are all
valuable contributions. Even filing a bug (appendix A.2) helps improve the
software.

A.5 Bibliography 243

A.5 Bibliography

[Lua51Ref] R. Ierusalimschy, L. H. de Figueiredo, W. Celes; Lua 5.1 Reference
Manual; http://www.lua.org/manual/

[UserGuide] http://chdk.wikia.com/wiki/File:CHDK_UserGuide_April_
2009_A4.pdf

[Gulbins2009] Juergen Gulbins / Rainer Gulbins; Photographic Multishot
Techniques; Rocky Nook; 2009

[Howard2008] Jack Howard; Practical HDRI; Rocky Nook; 2008
[Bloch2007] Christian; The HDRI Handbook; Rocky Nook; 2007

244 APPENDIX

INDEX 245

Index

Symbols
3d 217
<ALT> mode 7, 17, 22, 27, 77, 78, 82, 126,

208, 209, 213, 214, 218, 223

A
Additive System for Photographic

Exposure, see APEX
AdobeRGB 46, 47
AE 4, 28, 134, 176, 178, 198, 221
AF 4, 134, 138, 167

 – Canon AF system 45
 – Frame 61, 131, 136, 224
 – key 65
 – LED 120, 229
 – light 133, 161
 – lock 120, 144, 145, 158, 162
 – mode 131, 214, 220
 – system 26

ALT key 14, 17
anaglyph 207, 213, 214, 217, 218, 220
Aperture-priority 29
APEX 24, 25, 114, 182
assignment 85, 94
Auto DR 42
auto focus, see AF
AutoISO 29, 57, 61, 118
automatic exposure, see AE
Autopano 217
Autopano Pro 199, 200, 201
AUTORUN 11, 13, 14, 237, 238
Autostart 78, 124, 125, 238, 239
Av 24, 25, 56, 114, 116, 117, 127, 129,

130, 133, 134, 180, 181, 182

B
BADPIXEL.LUA 49, 50
Bad Pixel Removal 40, 49, 50
balloon 1, 2, 139, 140, 231, 232, 241
battery 20, 21, 41, 66, 67, 68, 126, 127,

141, 187, 197, 210, 222, 234
 – indicator 9
 – meter 6, 8
 – power 8, 174

 – symbol 20
 – text 20
 – voltage 21, 126

benchmark 178
bitrate 64
block 80, 92, 95, 101, 107, 194, 196
blue LED 27, 123, 208, 209, 210, 211, 212,

222, 229, 232, 242
bracketing 2, 9, 17, 29, 55–63, 56, 57, 58,

61, 63, 70, 77, 139, 140, 207, 218, 224,
226, 227, 228, 236

 – exposure 6, 33, 201–204, 226, 228
 – focus 1, 159, 222, 223, 226, 227, 228

build info 72
button 6, 7, 12, 13, 14, 17, 18, 19, 20, 22,

24, 27, 30, 31, 33, 46, 53, 65, 66, 67, 69,
70, 71, 72, 77, 78, 80, 81, 82, 83, 91, 92,
99, 112, 113, 120, 148, 166, 170, 176,
184, 190, 195, 207, 208, 209, 213, 220,
225, 230, 239, 242

Bv 24, 25, 114, 119, 134, 169, 181, 182

C
calendar 9, 70, 207
Camera Spacing 214, 216, 218, 220
card reader 11, 12, 13, 51, 205, 207
CardTricks 11–13, 242
CCD 3, 20, 37, 126
CHDK community 1, 2, 6, 128, 129, 146,

178, 242
Codepage 18, 71–72, 72
CombineZP 62, 164, 218
command 13, 40, 67, 79, 83, 84, 85, 86,

88, 90, 91, 92, 94, 95, 98, 99, 101, 110,
112–124, 127, 128, 129, 139, 141, 142,
143, 163, 164, 165, 166, 173, 174, 176,
182, 183, 185, 194, 195, 196, 207, 209,
211, 212, 224, 225, 226, 227, 228, 229,
230, 239

comment 71, 80, 91, 101, 151, 154, 194,
225

communications 211–230
conditional clause 86–87, 95–96
configuration 2, 22, 55, 72, 79, 186–193,

196, 206, 220, 239, 241
core functions 102

Custom Curves 20, 41–44, 53, 57
cylindrical projection 200, 202

D
Dark Frame Subtraction 39, 50, 123
debugger 194, 195, 225, 241
depth of field, see DOF
deviation 213, 214, 215, 216, 220, 221
DIGIC 5, 77, 84, 128, 139
Digiscoping 2, 208, 222–224, 226
digital macro 3, 79, 129, 130
DIGITAL_MACRO 127
Digital Magnifier 79
digital zoom 3, 4, 23, 65, 133, 136, 146,

214
display 12, 17, 19, 29, 32, 33, 49, 62, 63,

64, 66, 70, 72, 79, 81, 82, 83, 84, 86, 88,
94, 113, 122–123, 135, 139, 141, 142,
144, 145, 151, 153, 157

DOF 24, 26, 55, 56, 60, 61, 77, 119, 120,
140, 159, 217, 218, 222, 223, 235

DOF Calculator 6, 20–21, 26–27, 36, 61
DryOS 5, 6, 23, 27, 56, 84, 126, 128, 129–

138, 196, 215, 221

E
Edge Overlay 2, 9, 19, 48, 63–64, 199,

208, 213, 214, 216, 220, 239
error handling 100–101
Ev 20, 24, 25, 29, 35, 41, 42, 114, 119,

132, 201, 202, 226, 228
 – Fast Ev 30, 33

exposure 1, 2, 3, 4, 6, 8, 9, 20, 24, 28–44,
46, 50, 54, 55, 56, 57, 58, 112, 113,
114–119, 122, 130, 132, 134, 136, 140,
145, 146, 161, 164, 170, 176, 178,
180–182, 198, 202, 209, 210, 221, 222,
225, 226, 228, 231, 232, 233, 235, 241

F
FAT 11, 12, 206
FAT16 13, 237
FAT32 12, 13, 206, 237, 238

246 INDEX

file browser 9, 14, 19, 24, 49, 53, 56, 63,
70–71, 77

Firm update 14, 237, 238
firmware version 6, 7, 11, 12, 13, 14, 205,

239
flash 4, 17, 28, 36, 37, 40–41, 78, 112,

113, 121, 130, 131, 132, 134, 137, 139,
161, 162, 163, 210, 221–222

Flash 200
focusing 2, 45, 46, 61, 69, 83, 112, 120,

134, 141, 143, 144, 150, 152, 159, 165,
166, 167, 169, 173, 176, 177, 178, 179,
209, 217, 222, 223, 226, 227

focus stacking 9, 46, 56, 60–62, 159, 160,
164, 217, 218, 223, 227

function 2, 3, 5, 6, 7, 14, 17, 54, 55, 63, 65,
66, 67, 68, 69, 70, 71, 72, 78, 81, 82, 91,
92, 93, 94, 95, 97, 99–100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 114, 123, 124, 125, 126, 140,
141, 142, 143, 144, 145, 147, 148, 149,
151, 152, 153, 154, 156, 157, 159, 168,
169, 170, 171, 172, 180, 181, 182, 183,
186, 187, 188, 189, 190, 192, 194, 195,
196, 198, 205, 207, 208, 209, 210, 211,
214, 215, 217, 220, 221, 226, 232, 234,
237, 238, 239, 242

G
games 9, 70, 207
GentLED 69, 232
gigapixel 233
GOTO 79, 89, 90, 98, 162
grid 22–24, 35, 70, 165, 173, 174, 175,

176, 177, 178, 206, 215, 216, 220, 221

H
Hat 171, 178, 179
HDR 2, 9, 33, 42, 55, 56, 57–60, 77, 140,

146, 186, 197, 198, 199, 200–203, 226
HDR Panorama 199
HD video 4
header 68, 78, 79, 85, 91, 92, 99, 101,

147, 151, 168, 180, 194, 196, 208, 209,
210, 219

histogram 1, 6, 8, 19, 20, 28, 33–35, 36,
122

hot pixels 38, 39, 50, 51
Hugin 79, 200, 201, 202, 217
hyperfocal distance 6, 26, 120, 159, 161,

162, 209

I
image stabilizer 3, 32, 125, 137, 231, 233
IO functions 103

J
Java 93, 194, 200, 241

K
KAP 2, 205, 208, 229, 231, 232, 241
Kite Aerial Photography, see KAP

L
libraries 101, 102, 196
lightning 140, 164, 165, 166, 171, 176,

177, 179
loop 82, 88–89, 91, 96–98, 142, 143, 144,

152, 156, 157, 172, 173, 174, 184, 190,
195

Lua 2, 6, 8, 55, 77, 78, 84, 92–140, 141,
143, 144, 147, 151, 164, 165, 166, 170,
180, 186, 194, 196, 207, 231, 243

M
macro 3, 22, 23, 45, 55, 60, 113, 120, 131,

159, 164, 166, 171, 177, 179, 213, 216,
227

mathematical functions 111
memory 1, 2, 6, 7, 9, 11, 12, 14, 15, 20, 21,

23, 42, 48, 49, 54, 63, 69, 70, 71, 72, 77,
103, 123, 124, 126, 127, 149, 164, 173,
188, 194, 197, 199, 201, 203, 205, 206,
207, 234, 237, 239

MoreBest 6
motion detection 1, 2, 6, 8, 77, 79, 139,

140, 164–179, 206, 241
Multikopter 231, 233

N
ND filter 4, 28, 29, 60, 114, 117, 138, 163,

164, 176, 180, 181, 182, 225
nodal point 197, 198
noise 4, 30, 31, 33, 38, 39, 40, 41, 46, 50,

51, 54, 56, 57, 58, 59, 123, 124, 198
 – audio 65, 235

Notepad++ 194

O
onion skinning 63, 207
On Screen Display, see OSD
operating system functions 105
optical zoom 3, 4, 8, 65
OPTICAL_ZOOM 134
OSD 6, 8, 9
OSD Layout Editor 20

P
panorama 2, 9, 48, 63, 79, 186, 197–202,

201, 207, 208, 212, 217, 233
power saving 27, 234
Property Case 27, 72, 84, 128–139, 141
protected mode 100
PTViewer 200
pulse width 212

R
RAW 1, 2, 3, 6, 7, 8, 14, 20, 21, 30, 38, 41,

42, 43, 44, 46–55, 56, 58, 59, 71, 121,
123

RAW converter 41, 46, 47, 49
RawTherapee 48, 51, 178
rectilinear projection 200
remote control 1, 2, 9, 54, 66, 67, 68, 69,

70, 113, 126, 182, 183, 197, 205, 206,
208, 209, 210, 211, 218–221, 219, 222,
223, 224, 229, 231, 233

renaming 105, 147, 156
Ricoh CA1 66, 68, 69, 208, 209, 219, 222

S
schedule 140, 150–158
SciTE IDE 194
scripting 2, 5, 6, 8, 77–196, 207, 208, 211,

224–230, 231, 236
SD card 11, 13, 70
SDM 2, 68, 70, 88, 205–230, 231, 232,

234, 241
SDM Installer 205, 206
serial interface 208, 231, 232
shutter priority 1, 28, 29, 38, 180, 233
shutter speed 4, 8, 24, 25, 26, 27, 28, 29,

31, 32, 36, 37, 56, 58, 180, 181, 210,
221, 231, 233, 241

splash screen 5, 13, 14, 27–28, 207
sRGB 7, 46, 47
stereo 2, 9, 48, 63, 68, 205, 206, 207, 208,

210, 211, 212–222, 241
Stereo Data Maker, see SDM
StereoPhotoMaker 217, 218, 241

INDEX 247

string 85, 92, 94, 101, 102, 103, 104, 105,
106, 108–110, 127, 144, 153, 154, 155,
158, 189, 224

string manipulation functions 108–110
subroutine 81, 82, 83, 84, 85, 88, 90, 91,

99, 161, 162, 163, 173, 174, 184, 185
Sv 24, 25, 114, 118, 134, 180, 181, 182
synchronize 68, 69, 210, 218–221

T
table 93, 94, 97, 99, 102, 105, 106, 107,

108, 110, 111, 124, 127, 141, 170, 171,
180, 188, 190, 191

table manipulation functions 110
temperature 20, 126, 232
tethered shooting 69, 70, 211
text file reader 9, 71, 208
time-lapse 2, 63, 65, 66, 69, 135, 140,

145–147, 150, 203, 211, 228, 237, 241
tone mapping 41, 57, 59, 60, 146, 198,

203
Tv 24, 25, 28, 37, 38, 56, 58, 114, 115,

116, 127, 129, 130, 133, 134, 181, 182,
201, 202, 221, 223, 226, 227, 228

Twin Cam 210, 211, 214, 215, 220, 221

U
uBasic 2, 6, 8, 77, 79–91, 92, 94, 95, 96,

97, 99, 100, 101, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 128, 129, 139, 140, 143,
160, 164, 165, 194, 207, 224, 225, 241

UBDB 194, 195, 225
USB 6, 9, 11, 66, 67, 68, 69, 113, 126, 182,

183, 184, 185, 209, 211, 212, 218–221,
219, 223, 224, 225, 228, 229, 232, 234

V
variable 79, 81, 82, 83, 84, 85, 86, 87, 88,

91, 92–94, 95
ver.req 11, 12, 14
vers.req, see ver.req
video 1, 4, 8, 9, 17, 20, 24, 64–66, 113,

125, 129, 130, 134, 135, 136, 145, 146,
147, 167, 168, 169, 173

video options 64–66
VR head 198
VxWorks 5, 6, 84, 126, 128, 136, 196

W
warranty 14, 15
WIA-Loader 70, 211, 229, 234
write protection lock 14

Z
zebra 9, 19, 28, 35, 36, 235
Z-frame 206, 211, 219, 220
zoom 3, 4, 6, 8, 9, 23, 24, 27, 32, 58, 63,

65, 69, 70, 72, 80, 81, 82, 83, 113, 120,
121, 133, 134, 136, 146, 176, 183, 184,
185, 197, 198, 202, 208, 210, 213, 214,
215, 221, 222, 224, 226, 232, 239

Back cover image data

SUBJECT Hamburg Docklands
CAMERA Canon SD1100 IS
ISO 6121
SHUTTER SPEED 1/19
APERTURE f/2.8
FOCAL LENGTH 6.2 mm (equiv 38 mm)

Shot handheld with six single exposures as DNG images.
Superimposed with PhotoAcute.

Berthold Daum

Book Website www.photozora.org/cchm

 f Images

 f Errata

 f Updated software and scripts

	Table of Contents
	Chapter 1 Introduction
	How this book is organized
	Acknowledgments

	Chapter 2 Cameras and Operating Systems
	2.1 Camera hardware
	2.2 Processors and operating systems
	2.3 The CHDK: What it is and how it works
	2.3.1 History
	2.3.2 How it works
	2.3.3 What the CHDK can do for you

	Chapter 3 Installing the CHDK
	3.1 Requirements
	3.2 Does a CHDK exist for my camera?
	3.3 Downloading the CHDK
	3.4 Manual installation
	3.5 The warranty question

	Chapter 4 Teach Your Camera New Tricks
	4.1 Using menus
	4.2 Customizing the user interface
	4.2.1 OSD Codepage
	4.2.2 Fonts
	4.2.3 Colors
	4.2.4 Organizing the screen
	4.2.5 User menus
	4.2.6 Grids
	4.2.7 Miscellaneous Values
	4.2.8 Customizing the DOF calculator
	4.2.9 Other user interface options

	4.3 Exposure
	4.3.1 Overrides
	4.3.2 Custom Auto ISO
	4.3.3 Histogram
	4.3.4 Zebra
	4.3.5 High-speed photography
	4.3.6 Night photography
	4.3.7 Flash
	4.3.8 Using curves

	4.4 Focus
	4.5 Shooting RAW
	4.5.1 Basics
	4.5.2 DNG
	4.5.3 Other RAW parameters
	4.5.4 Processing RAW images
	4.5.5 In-camera RAW processing
	4.5.6 More RAW processing

	4.6 Bracketing
	4.6.1 General bracketing notes
	4.6.2 HDR and tone mapping
	4.6.3 Focus stacking

	4.7 Edge overlay
	4.8 More video options
	4.9 Remote control
	4.9.1 CHDK remote control functions
	4.9.2 Building a simple remote control
	4.9.3 SDM functions
	4.9.4 Extra hardware
	4.9.5 Tethered shooting?

	4.10 Utilities
	4.10.1 File browser
	4.10.2 Text file reader
	4.10.3 Getting information about the camera

	4.11 Novelty
	4.11.1 Games
	4.11.2 Flashlight

	4.12 The CHDK configuration file

	Chapter 5 Scripting
	5.1 Launching and configuring scripts
	5.2 uBasic
	5.3 uBasic primer
	5.3.1 Variables
	5.3.2 Assignments
	5.3.3 Output
	5.3.4 Conditional clauses
	5.3.5 Case structures
	5.3.6 Loops
	5.3.7 Labels and GOTOs
	5.3.8 Subroutines
	5.3.9 Comments
	5.3.10 Script structure

	5.4 Lua primer
	5.4.1 Variables
	5.4.2 Strings
	5.4.3 Tables
	5.4.4 Assignments
	5.4.5 Output
	5.4.6 Blocks
	5.4.7 Conditional clauses
	5.4.8 Loops
	5.4.9 Functions
	5.4.10 Error handling
	5.4.11 Comments
	5.4.12 Script structure
	5.4.13 Standard Libraries

	5.5 CHDK commands
	5.5.1 Button-related commands
	5.5.2 Exposure-related commands
	5.5.3 Focus-related commands
	5.5.4 Zoom-related commands
	5.5.5 Flash-related commands
	5.5.6 Image-related commands
	5.5.7 Time-related commands
	5.5.8 Display-related commands
	5.5.9 Image management commands
	5.5.10 Camera state
	5.5.11 Low-level commands (Lua only)
	5.5.12 The library capmode.lua (Lua only)

	5.6 Property Cases
	5.7 Example scripts
	5.7.1 Time machines
	5.7.2 Bracketing
	5.7.3 Motion detection
	5.7.4 Exposure control
	5.7.5 Remote control
	5.7.6 Configuration switching

	5.8 Script development

	Chapter 6 Advanced Techniques
	6.1 Panoramas
	6.2 HDR Panoramas
	6.3 HDR videos

	Chapter 7 The Stereo Data Maker (SDM)
	7.1 Installing the SDM
	7.2 Restrictions
	7.3 Additional functions
	7.4 Operation
	7.5 Remote control
	7.6 Communications
	7.6.1 USB upload
	7.6.2 Serial communications

	7.7 Stereo photography
	7.7.1 Stereo photography with a single camera
	7.7.2 Producing and viewing composite stereo images
	7.7.3 Stereo focus stacking
	7.7.4 Synchronized cameras
	7.7.5 Synchronized flash

	7.8 Digiscoping
	7.9 Scripting

	Chapter 8 Kites, Balloons, and Multikopters
	8.1 Kite Aerial Photography
	8.2 Balloon-based photography
	8.3 Motorized flying platforms
	8.4 Other unattended operations

	Chapter 9 A Look across the Fence
	9.1 Canon EOS CHDK
	9.2 Canon 5D as a professional movie camera
	9.3 Pentax hacks

	Appendix
	A.1 Using cards with more than 4 GB capacity
	A.2 Troubleshooting
	A.3 Web links
	A.4 Contributing to the CHDK
	A.5 Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

