

Table of Contents
Introduction...1

Patent Encumbered Video..1
A Better Way...1

About This Manual...2
1. Register..2
2. Contribute!...2
3. Chat..3
4. Mailing List..3

What is Digital Video?..4

What is Theora?..5
History...5
The Web...5
Patents and Copyright..5
Other Free Video Formats...6

Codecs..7
Quality...7
Bitrate and quality..7
 Codecs and quality..8
Theora and quality...8

Containers..9
The difference between containers and codecs..9

Playing Theora..10
Integrating Theora..10

VLC..11
Installing..11
Playing Video..11
Basic Playback Controls..12

Miro..13
Installing..13
Playing A Video...13

Introduction...15

 HTML5 Video..16
Basic Syntax..16
Parameters..16
Using your own controls / player skin...17
Manual Fallback options..17
Javascript Based Players..18
Support in Browsers...18

Hosting on your own site..19
Mime Types...19
oggz-chop...19
Allowing Remote Access...20
Serving Videos via a Script..20

i

Table of Contents
 Hosting Sites...22

TinyVid.tv..22
The Video Bay...22
Archive.org..23
Dailymotion...24
Wikimedia Commons..25

Introduction...27
Video Quality, Bit-Rate and File Size...27
 Video Resolution and Frame-Rate..27
Clipping the Frames in the Video..28
Video-Audio Synchronization...28
Keyframe-Interval..28

Firefogg..29
Installation...29
Encoding your first video...30
Advanced Encoding Options...32

Custom Settings...33
Other Uses of Firefogg...34

Encoding with VLC..35
Using the GUI..35
Advanced Options ...36
Encoding from the Command Line..37

Recommended Encoding Options...37
Why not to use the GUI...38

 ffmpeg2theora..39
Basic Usage..39
Adding Parameters...39
Advanced Options..39

--sync...40
--keyint <N> ..40

 --framerate <N>..40
 --starttime <N> --endtime <M>...40

Two-Pass Encoding...40
Why Two-Pass Encoding..40

Using Two-Pass Mode..40

Thoggen..42
Selecting the DVD Titles to Encode..42
Configuring the Encoding Process...43
A Note on Cropping...43

Subtitles..45
Finding Subtitles..45
Subtitle File Formats..45
Editing SRT files...46
Creating subtitles from scratch..46

Distribution..47

ii

Table of Contents
Embedding Subtitles...48

Example commands for subtitle embedding..48
Adding subtitles to an existing video...49

Playing Subtitles..50
VLC...50
Play subtitles on a DVD disk...50
Play subtitles in Matroska files..51
Play External Subtitles...52

Publishing..54
Hosting external subtitle files along with video on a web server..54
Hosting video with embedded subtitles on a web server...55

Web Video Accessibility...56
Accessibility user groups...56
Accessible HTML5 video controls..56
Providing video accessibility data...57
Publishing accessible video on the Web..57

What is streaming?...59
Varieties of Streaming Services...59

 Live Streaming...59
Delivery..59
Streaming Servers..59

 Icecast..61

TSS...63
Installing TSS..64

Installing on 64 bit...64
Using TSS..66

 Streaming with ffmpeg2theora...70
Getting Ready..70
Set-Up..70

Streaming with VLC...72
 Streaming Server Requirements...72
Choosing Video File to Stream..72
Stream Settings..74

Saving a Theora Stream...75
Extracting parts of a video...75

 Introduction..76

PiTiVi...77
Installing..77
Importing Video...77
Adding Clips..78
Playback...79
Moving Clips...80
Cutting Clips..80

iii

Table of Contents
PiTiVi

Deleting Clips..80
Export to Ogg Theora..81

Introduction...82
Installing the Ogg Video Tools..82

Installing from Source...82...82...82

Create Thumbnails...84
Creating a Series of Thumbnails..84
Creating Thumbnails with Fixed Height or Fixed Width..84

Advanced Functionality..85...85

Creating a Slideshow..86
Command Line Options...86
Adding Sound to a Slideshow..87
Adding a Fixed Starting Picture...88
A Script for Everything..88

Creating a Video Preview...90
Adding a Play Button...90

 Introduction..91
Lossless Video Editing..91
Tools..91

A Bit of Theory..93
Anatomy of a Theora Video..93
Demultiplexing..93
Page Timestamps...93
Encapsulating Codec Data...94

Encapsulating Theora Video Data...94
Encapsulating Vorbis Audio Data...94

Ogg Skeleton..94

Splitting a Video File..95

Cutting an Ogg File...96
Using oggCut...96

Video/Audio synchronization issues with oggCut..96
Using oggz-chop..96

Join Streams..98

Ogg File Concatenation..99
The Process..99
Using cat..99
oggCat and oggz-chop...99
Syncronizing issues with oggCat...100

OggResize...101
Examples..102

iv

Table of Contents
Analysing Ogg Files..104

Information about an Ogg file..104
Analysing an Ogg file in detail..105
Tips and tricks..106

Getting the Duration of a Stream..106
Creating a sound byte from a portion of a video...106
Adding an embedded text subtitles stream..106
Getting a list of all packets in a stream in a very compressed way...106

Other Interesting Things..108
Video and SVG..108
Video and CSS Transforms...108
Video and Subtitles..108
Replace background with image..108

Glossary...109

License..111

 Authors..112

 General Public License..120

v

Introduction
The web grew as fast as it did because of its neutral design. Open standards, free software and transparent
technologies have empowered a lot of this development. Because of this open environment, web developers
can easily create web pages, software developers can build upon existing projects to extend what we can do
on the net, and users can browse the web, send email, and use a wide range of applications.

With online video however, almost all of the basic technologies for its creation and playback are not free or
transparent. For example, if a software developer makes a new video player, they must pay royalties to the
companies that hold certain patents in order to distribute it legally. These patents (like most software patents)
lock down extremely basic ideas. For example: one company has patented the idea of storing pieces of an
image from left to right, top to bottom! Taken together, the thousands of patents on video techniques stifle the
emergence of new ways of distributing and interacting with media.

Patent Encumbered Video

For those concerned with the dominance of private interests over public life, this is an obvious problem: how
could the basic ideas necessary to develop software be controlled by a small number of corporations? It
creates very concrete problems as well: the global movement for free software cannot include support for
many video formats with its products. And because patents make it costly for developers to distribute their
own video players, developers depend on a few products from Microsoft, Apple, and Adobe. On the web,
over 98% of online video is delivered using Flash.

The problems are not just within the realm of software development - if you create or publish video online
then patent-encumbered technologies affect you directly. Patent holders have the power to extract fees from
content producers and MPEG LA, which represents patent holders of the popular MPEG video technologies,
charges license fees from television broadcasters, DVD distributors, and others. At this moment they don't
charge for online distribution, but at the end of 2009 they are expected to announce new royalty terms, and
these new terms could threaten independent publishers of online video.

A Better Way

Now, however, we have an online video technology that anyone is free to use, study, improve, and distribute
without needing permission or paying fees. This technology is called Ogg Theora (or just 'Theora'). Some
parts of Theora are patented, but the owners of those patents have granted a permanent, irrevocable,
royalty-free patent license to everyone. Theora carefully avoids any patents held by traditional patent holders:
to get around the ridiculous patent of image storing mentioned above, Theora stores video image information
from bottom to top instead of top to bottom!

Recognizing that Theora is a crucial ingredient for the freedom of our internet, Mozilla, Opera and Google
have announced support of Theora video for future or current releases of their browsers. This means that
millions of users will be able to watch Theora videos using their browser, without the need for extra software.
The work of the free software community, with support from Mozilla, Wikipedia and others, has brought
Theora to the same level of quality as state-of-the-art video technologies.

There are other important projects with similar goals, like Dirac, an effort spearheaded by the BBC. But the
exciting thing about Theora is that it's here now, supported by popular tools, and ready for mass adoption. By
learning how to use Theora and involving it in your work, you can help make the web more exciting and more
free.

Introduction 1

About This Manual
This manual was written during a 5 day Book Sprint in the Haus der Kulturen der Welt, Berlin (August 10-15,
2009).

Present were :

Jan Gerber

Homes Wilson

Susanne Lang

David KÃ¼hling

JÃ¶rn Seger

Plus many people helping online. Many thanks also to Leslie Hawthorn and Google for supporting this sprint,
and to the Berlin Summercamp. This book is an ongoing effort...please feel free to improve it!

1. Register

Register at FLOSS Manuals:
http://en.flossmanuals.net/register

2. Contribute!

Select the manual http://en.flossmanuals.net/bin/view/TheoraCookbook/WebHome and a chapter to work on.

If you need to ask us questions about how to contribute then join the chat room listed below and ask us! We
look forward to your contribution!

For more information on using FLOSS Manuals you may also wish to read our manual:
http://en.flossmanuals.net/FLOSSManuals

About This Manual 2

http://en.flossmanuals.net/register
http://en.flossmanuals.net/bin/view/TheoraCookbook/WebHome
http://en.flossmanuals.net/FLOSSManuals

3. Chat

It's a good idea to talk with us so we can help co-ordinate all contributions. We have a chat room embedded in
the FLOSS Manuals website so you can use it in the browser.

If you know how to use IRC you can connect to the following:
server: irc.freenode.net
channel: #flossmanuals

4. Mailing List

For discussing all things about FLOSS Manuals join our mailing list:
http://lists.flossmanuals.net/listinfo.cgi/discuss-flossmanuals.net

3. Chat 3

http://lists.flossmanuals.net/listinfo.cgi/discuss-flossmanuals.net%20

What is Digital Video?
Video is a series of images that appears as an image in motion. The first "videos" (films) were literally a series
of photographs, illuminated one-by-one at a rate fast enough to trick the human eye. Digital video can be
thought of as a series of images but usually the reality is more complex.

While it is possible to store videos as a series of still images (frames), this is a somewhat wasteful approach as
a lot of information must be stored. Surely there must be a better way! Well, when we look at frames in a
movie we quickly see that only parts of a moving image change from one frame to the next while the rest of
the image stays exactly the same. If the image is of someone walking, for example, perhaps they move while
the background stays the same. So why not simply describe what changes from one frame to the next, since a
little description is much less information than a whole image itself?

In fact, that's what digital video does. And in a world with limited disk space and network connections, simple
ideas like this one can let you store hundreds of videos on your computer, instead of a handful or download a
video in minutes, instead of hours.

In addition to this technique, digital video employs other methods to reduce the amount of data in a video.
Digital video often uses tricks such as describing regions of similar color instead of describing each point one
at a time -similar ways are used for describing images. Or they carefully describe certain parts of the image
where lots of detail or movement is happening, for instance the part you're probably staring at, while giving
less attention to the boring stuff at the edges. These ideas are not new, but they are improving rapidly with
exciting consequences for producers of online video.

What is Digital Video? 4

What is Theora?
Theora is a video technology for creating, editing, manipulating, and playing video. This type of technology is
often referred to as a video format or codec (a portmanteau of coder-decoder). Theora is a free video format,
meaning that anyone is free to use, study, improve, and distribute it without needing permission. Some parts
of Theora are patented, but the owners of those patents have granted a permanent, irrevocable, royalty-free
patent license to everyone.

Because distribution and improvement of Theora is not limited by patents, it can be included in free software.
Distributions of GNU/Linux-based operating systems, such as Ubuntu, Debian GNU/Linux, or Fedora, all
include Theora "out-of-the-box". And free software web browsers like Firefox and Chrome support Theora. If
we consider the six major usage share of web browsers statistics of July 2009, approximately 25% of Internet
users across all of these statistics are using Firefox and 2.5% are using Chrome as their browser. This means
that every day a huge number of people are using software capable of playing Theora video.

History

Theora is based on an older technology called VP3, originally a proprietary and patented video format
developed by a company called On2 Technologies. In September 2001, On2 donated VP3 to the Xiph.Org
Foundation under a free software license. On2 also made an irrevocable, royalty-free license grant for any
patent claims it might have over the software and any derivatives, allowing anyone to build on the VP3
technology and use it for any purpose. In 2002, On2 entered into an agreement with the Xiph.Org Foundation
to make VP3 the basis of a new, free video format called Theora. On2 declared Theora to be the successor to
VP3.

The Xiph.Org Foundation is a non-profit organization, that focuses on the production and mainstreaming of
free multimedia formats and software. In addition to the development of Theora, they developed the free
audio codec Vorbis, as well as a number of very useful tools and components that make free multimedia
software easier and more comfortable to use.

After several years of beta status, Theora released its first stable (1.0) version in November 2008. Videos
encoded with any version of Theora since this point will continue to be compatible with any future player. A
broad community of developers with support from companies like Redhat and NGOs like the Wikimedia
Foundation continue to improve Theora.

The Web

Support for Theora video in browsers creates a special opportunity. Right now, nearly all online video
requires Flash, a product owned by one company. But, now that around 25% of users can play Theora videos
in their browser without having to install additional software, it is possible to challenge Flash's dominance as
a web video distribution tool. Additionally, the new HTML5 standard by the W3C (World Wide Web
Consortium) adds another exciting dimension â�� an integration of the web and video in new and exciting
ways that complement Theora.

Patents and Copyright

The world of patents is complicated, leaving plenty of room for Theora's competitors to spread fear,
uncertainty, and doubt ("FUD") about its usefulness as a truly free format. In essence, Theora is free. It is free
for you to use, change, redistribute, implement, sell or anything else you may like to do with it. But it's
important that supporters of free formats understand the questions that arise.

What is Theora? 5

http://www.xiph.org/

One commonly spread fear is that Theora infringes on submarine patents â�� patents nobody knows about
yet that the makers of Theora never had the authority to use. However it is also true that all modern software
could infringe on submarine patents â�� everything from Microsoft Word to the Linux kernel. However
millions of people and entire industries still use these tools. In other words, submarine patents are a problem
for the software industry as a whole, however, this doesn't mean that the software industry should stop
developing software.

It is also important to note that in a worst-case scenario, even if a submarine patent "emerged", Theora could
probably work around it; as this sort of thing happens all the time. Large organizations like the Mozilla
Foundation and Wikipedia have examined this issue and have come to this same conclusion.

The software produced by Xiph.org is also subject to copyright, and made available under free software
licenses. Xiph.org provides code so that anyone can include it in any application. Xiph.org also provides a set
of tools for working with Theora files. This means you can study, modify, redistribute and sell anything you
make using Theora or any of the tools provided with it.

Other Free Video Formats

It is worth noting that there is another project creating a royalty-free, advanced video compression format. It is
called Dirac. Originally created by the BBC Research department, Dirac will in the future try to cover all
applications from Internet streaming to Ultra-high definition TV and expand to integrate with new hardware
equipment technologies. Nevertheless, Ogg Theora lends itself extremely well to online (streaming) video
distribution, whereas Dirac will likely become a better choice for sharing video files that are of high-definition
footage.

Patents and Copyright 6

Codecs
To work with digital video it often helps to know a little bit about the technology, so lets look at some of the
basic concepts behind digital video.

A codec is a mathematical formula that reduces the file size of a video or audio file. Theora is known as a
video codec since it works exclusively with video files.

When a codec reduces a file size of a video file, it is also said to be compressing the file. There are two forms
of compression that are of interest here - Lossless and Lossy Compression.

Lossless compression - This is the process of compressing data information into a smaller size
without removing data. To visualise this process imagine a paper bag with an object in it. When you
remove the air in the bag by creating a vacuum the object in the bag is not affected even though the
total size of the bag is reduced.

1.

Lossy compression - Sometimes called 'Perceptual Encoding', this is the process of 'throwing away'
data to reduce the file size. The compression algorithms used are complex and try to preserve the
qualitative perceptual experience as much as possible while discarding as much data as necessary.
Lossy compression is a very fine art. The algorithms that enable this take into account how the brain
perceives sounds and images and then discards information from the audio or video file while
maintaining an aural and visual experience resembling the original source material. To do this the
process follows Psychoacoustic and Psychovisual modeling principles.

2.

Quality

The quality of digital video is determined by the amount of information encoded (bitrate) and the type of
video compression (codec) used. While there are some codecs that can be considered to be more advanced
than Theora, the difference in perceived quality is not significant.

Bitrate and quality

Since digital video represents a moving image as information, it makes sense that the more information you
have, the higher the quality of the moving image. The bitrate is literally the number of bits per second of video
(and/or audio) used in encoding. For a given codec, a higher bitrate allows for higher quality. For a given
duration, a higher bitrate also means a bigger file. To give some examples, DV cameras record video and
audio data at 25Mbit/s (a Mbit is 1,000,000 bits), DVDs are encoded at 6 to 9 Mbit/s, internet video is limited
by the speed of broadband connections: many people have 512kbit/s (a kbit/s means 1,000 bits delivered per
second) or 1Mbit/s lines, with 16Mbit/s connections becoming more common recently. Right now, around
700kbit/s is commonly used for videos embedded on web pages.

There are many reasons to want a lower bitrate. The video may need to fit on a certain storage medium, like a
DVD. Or you may want to deliver the video fast enough for your audience, whose average internet connection
speed is limited, to be able to watch it as they receive it.

Different kinds of video may require different bitrates to achieve the same level of perceived quality. Video
with lots of cuts and constantly moving camera angles requires more information to describe it than video
with many still images. An action movie, for example, would require a higher bitrate than a slow moving
documentary.

Most modern codecs allow for a variable bitrate. This means that the bitrate can change over time in
response to the details required. In this case, a video codec would use more bits to encode 10 seconds of quick
cuts and moving camera angles than it would use to encode 10 seconds of a relatively still image.

Codecs 7

Codecs and quality

Codecs reduce the necessary bitrate of a media file by describing the media in clever, more efficient ways.
Video codecs describe the changes between one frame and the next, instead of describing each frame
separately. Audio codecs ignore certain frequencies that the human ear doesn't notice. Just as simple
techniques can dramatically reduce the bitrate and size of the file, more sophisticated techniques can reduce it
even more. This is how some codecs can be considered superior to others.

When codecs use complicated mathematical techniques to encode video, you need a powerful chip to decode
that video quickly enough for playback. This is a reason why sometimes it's best to use a simpler codec. Video
encoded using state-of-the-art tricks may be unwatchable on an old computer, for example. Or it sometimes
might be best to use an older, simpler video codec (as DVDs do) because the hardware required to play it will
be cheaper.

Theora and quality

Thanks to recent work by the Theora community, Theora achieves a similar level of quality to other modern
codecs like h.264, the patent-encumbered codec used by Apple, Youtube, and others. This can be a matter of
some controversy, and there are reasons to consider h.264 technically superior in quality to Theora. But the
best way to decide is to see for yourself.

These sites have side-by-side comparisons between Theora and h.264:

http://people.xiph.org/~greg/video/ytcompare/comparison.html

http://people.xiph.org/~maikmerten/youtube/

 Codecs and quality 8

http://people.xiph.org/~greg/video/ytcompare/comparison.html
http://people.xiph.org/~maikmerten/youtube/

Containers
A container or wrapper is a file format that specifies how different streams of data can be stored together, or
sent over a network together. It allows audio and video data to be stored in one file and played back in a
synchronised manner. It also allows seeking in the data, by telling the playback software where the audio and
video data is for certain points in time.

In addition to audio and video, containers may provide meta data about the data they contain, including the
size of the frames, the framerate, whether the audio is in mono or stereo, the sample rate, and also
information about the codecs used to encode the data.

When you play a digital movie that has sound, your player is reading the container, and decoding the audio
and video using separate codecs. Theora video is usually stored or streamed together with Vorbis sound in the
Ogg container, but it can be stored in other containers too. Matroska (.mkv) is another format people use for
Theora video.

The difference between containers and codecs.

The three letter extension at the end of the file name refers to the container, not the codec. People often get
confused about this. When a file ends in .mp4 or .avi, those are containers that could contain several different
combinations of audio and video streams. Certain containers don't work with certain codecs, and certain
codecs work best with certain containers. But you can't tell for sure what codecs a video file requires by
looking at the file extension.

Containers 9

Playing Theora
To play Ogg Theora videos you need a video player that supports Ogg Theora playback. Often to playback
some types of video you need to install obscure software which can be very frustrating and time consuming.
Fortunately, several video players can play Ogg Theora without the need to install anything else. The two
easiest players to use are notable because they work the same across all of the major Operating Sytems
(GNU/Linux, Mac OS X, Windows).

VLC is a free software video player that plays many different types of video files, including Theora. You can
get it here online at http://www.videolan.org/vlc

Miro is another video player that supports Ogg Theora video (http://getmiro.com).

If you don't have either or don't want to install them, you can also use the Firefox web browser versions 3.5
and later (http://getfirefox.com) as a Theora viewer.

As a rule of thumb, if the video is on your desktop, use VLC or Miro. If the video is already on the web, use
Firefox 3.5 or later.

Integrating Theora

If you want to use Theora with other softwares such as Windows Media Player or QuickTime Player, you
need to install components or filters that will enhance the functionality of Theora. This doesn't apply to you if
you use GNU/Linux, since Theora is natively supported in most distributions and plays with Totem and other
GStreamer based applications.

For Windows and Mac OS X you can add full functionality and support of Theora to all QuickTime based
applications, such as the QuickTime player itself, but also iTunes or iMovie. All you need to do is install the
Xiph QuickTime Components (XiphQT) that can be downloaded from the Xiph.Org Website:
http://xiph.org/quicktime/download.htm

The other useful filter a Windows user might be interested in is the Directshow Filter. It is also offered from
the Xiph.Org Foundation and adds encoding and decoding support for Ogg Vorbis, Speex, Theora and FLAC
for any Directshow application, such as Windows Media Player. You can also download the filters from the
Xiph.Org Website: http://xiph.org/dshow/

Playing Theora 10

http://www.videolan.org/vlc/
http://getmiro.com/
http://getfirefox.com/
http://getfirefox.com
http://xiph.org/quicktime/download.html
http://xiph.org/dshow/

VLC
VLC (which stands for VideoLAN Client) is an excellent tool for playing video and audio files. It is free
software, it plays a wide range of formats including Theora, and it runs on a variety of platforms. If you use
Windows, Mac OS X, or GNU/Linux (eg. Ubuntu) then VLC is a great option for you. VLC also works the
same across each Operating System so if you know how to use it in Windows (for example) you know how to
use it under Ubuntu. VLC's flexibility and reliability make it one of the most popular free software video
tools.

Installing

VLC is a desktop application that you need to download and install. Installation steps will vary depending on
what platform you're using (GNU/Linux, Mac OS X, or Windows).

This page has links to download VLC, and instructions for various platforms:

http://www.videolan.org/vlc/

There is also a good manual about how to use and install VLC linked from the FLOSS Manuals website.

Playing Video

Run VLC. You will see a window that looks more or less like this:1.

Go to File > Quick Open File in the VLC menu.2.

Find the Theora file you want to open. Select it, and click "Open".3.

VLC 11

http://www.videolan.org/vlc/

A video will appear in your window like this, and the video should begin playing.4.

Basic Playback Controls

As in most media players, you can drag the playback position indicator to move forward or backward
in the video.

•

For full-screen playback, double click on the video. To exit fullscreen, double click again. •

Playing Video 12

Miro
Miro (previously called Democracy TV) is a tool for finding, downloading and watching video from a wide
range of online sources. It is free software made by the nonprofit (NGO) Participatory Culture Foundation :
http://participatoryculture.org/.

Miro plays a wide range of formats including Theora, and it runs on a variety of platforms (Operating Systems
such as Windows, OSX, and GNU/Linux). In addition to video playback, Miro makes it easy to search for and
download videos from specially formatted lists of videos known as podcasts or vodcasts.

You can use Miro to play video on your desktop, or to download and watch video from a URL pointing
directly to the video file, or even a popular video website like YouTube. You can also use Miro to download
and then watch Bittorrent files (files ending in .torrent).

Installing

Miro is a desktop application that you need to download and install. Installation steps will vary depending on
what platform you're using (GNU/Linux, Mac OS X, or Windows).

This page has links to download Miro and instructions for various platforms:

http://getmiro.com

Playing A Video

Run Miro. After clicking through a few messages that display the first time Miro runs, you will see a
window that looks like this:

1.

Go to Video > Open in the Miro menu.2.

Miro 13

http://participatoryculture.org/
http://getmiro.com/

Find the file you want to open. Select it, and click "Open".3.

The video should begin playing in the Miro Window.4.

Playing A Video 14

Introduction
There is a few things to consider before you put your video online.

Keep in mind that in order for viewers to watch your video on your website, they need to have a
high-bandwidth connection. And the higher the video quality the higher the bandwidth needed to access the
video. This means that sometimes your target audience may not even be able to access video online, and
hence you may wish to consider another strategy such as distribution of the video on media like CD, DVD, or
USB storage sticks.

If your audience has a fast internet connection you may wish to offer the video either for download or for
playing from your website. Each strategy has its strengths depending on what it is you hope to achieve.

The advantages of offering your video for replaying on your website are mainly these :

you can define the context in which the video is being presented1.
it is convenient for your audience to just click and play the video2.
it is quite handy for your site visitors to just click and watch a small part of the video and not have to
download a huge amount of data just to get an impression of your work

3.

it is easy for your audience to show your work to others, for instance by sending around a link to the
video they want to point to

4.

The advantages of offering your video for download are these :

your audience can share it by file sharing networks (some see this as a weakness)1.
they can play it as many times as they wish without consuming extra bandwidth2.
they can edit it3.
they can show it offline (eg. movie screenings)4.
you can provide a higher quality video that is not possible to play in a website due to browser or
bandwidth constraints

5.

You could also opt to offer both strategies: an option to watch the video on your website and an option to
download the video. You could even choose to upload two different versions of your video: one encoded in a
quality more optimized for the web (something like a preview version of your film in a smaller size and
poorer quality) and one video for people to download in a better quality and larger size and resolution.

If you want to share your Video on your website you have a few options. One is using the great HTML 5
video tag. If that is not an option for every viewer since some might use old browsers, you might want to also
offer a fallback solution: the Cortado player (software you can embed in your webpage to play Theora).

If you don't have access to a server to store and deliver video, you can also use one of the many available
hosting sites, that offer free hosting of Theora video (you don't want to upload your video to hosting sites such
as Youtube since you would lose quality, and you would also wave some of your rights on the material).

Another strategy is to offer your video for download with bittorrent. Bittorrent is a peer-to-peer filesharing
protocol that shares the internet connection of a respective number of computers that download the same file.
Hence, the more people that download your video with bittorrent the faster the transfer will become for other
users. Bittorrent is probably the most economic way to transfer large popular files on the internet.

Introduction 15

HTML5 Video
If you create video, you may wish to display the content in a webpage. The code you use to create webpages
is governed by a set of rules known as HTML, and there is recently a new version of this these rules called
HTML 5.

HTML 5 introduces a video tag. A 'tag' is a few lines of HTML code that instructs the browser to display
something or do something. The HTML5 video tag allows simple integration of videos in a manner very
similar to placing images in a webpage.

The video can also be displayed with very nice controls for play, pause, altering the audio volume, and
scrolling through the timeline of the video.

Basic Syntax

Here is a basic example of a video embed tag using HTML 5 :

<video src="video.ogv"></video>

The above example embeds the video file, 'video.ogv', into a webpage. The file in this example should be
located in the same directory as the HTML file because the 'src' parameter refers to a local file. To reference a
video file in another directory on the same webserver you need to provide the path information just as you
would for an image file.

<video src="/bin/edit/myvideofiles/video.ogv"></video>

You can also specify a file on another server:

<video src="http://mysite.com/video.ogv"></video>

Parameters

Adding additional parameters provides more control over the video.

<video
 src="video.ogv"
 width="480"
 height="320"
 autoplay
 controls>
 Your Browser does not support the video tag, upgrade to Firefox 3.5+
</video>

 HTML5 Video 16

In this example the width and height of the video are provided. If you don't want the image to appear distorted
it is important that you set the height and width dimensions correctly. autoplay means that the video will be
played as soon as the page loads. controls specifies that the controls to pause or play the video (etc) are
displayed.

It is possible to include text or other HTML content inside the video tag as fallback content for browsers that
do not support the video tag.

Using your own controls / player skin

If you know a little Javascript you can control the playback quite easily. Instead of using the controls provided
by the browser, it is possible to create your own interface and control the video element via JavaScript. There
are two things you need to remember with this method :

Do not forget to drop the controls attribute1.
The video tag needs an id parameter like this :

<video src="video.ogv" id="myvideo"></video>

2.

Some JavaScript functions:

video = document.getElementById("myvideo");
//play video
video.play();
//pause video
video.pause();
//seek to second 10 in the video
video.currentTime = 10;

If you have multiple video tags in a single webpage you will need to give each a unique id so that the
javascript knows which video the controls refer to.

A full list of functions and events provided by the video tag can be found in the HTML5 spec at
http://www.whatwg.org/specs/web-apps/current-work/#video

Manual Fallback options

In the above, simple example, if the video element is not supported by the browser, it will simply fall back to
displaying the text inside the video element.

Instead of falling back to the text, if the browser supports Java, it is possible to use Cortado as a fallback.
Cortado is an open-source cross-browser and cross-platform Theora video player written in Java. The great
thing is that the user doesn't need to download any extra Java packages as the applet uses the standard native
Java in the browser. Cortado's home page can be found here :

http://www.theora.org/cortado/

A pre-compiled version of the applet is also available at this URL :

http://www.theora.org/cortado.jar

You can download the jar file, or you can refer to it directly. The following is an example to embed cortado
(not all paramters are required, but listed here to provide you an idea of possible options) :

Parameters 17

http://www.whatwg.org/specs/web-apps/current-work/#video%20
http://www.theora.org/cortado/
http://www.theora.org/cortado.jar%20

 <applet code="com.fluendo.player.Cortado.class"
 archive="http://www.theora.org/cortado.jar"
 width="352" height="288">
 <param name="url" value="http://myserver.com/theora.ogv"/>
 <param name="framerate" value="29"/>
 <param name="keepAspect" value="true"/>
 <param name="video" value="true"/>
 <param name="audio" value="true"/>
 <param name="bufferSize" value="100"/>
 <param name="userId" value="user"/>
 <param name="password" value="test"/>
 </applet>

If you select to download the jar file as a fallback, make sure you put it (cortado.jar) and the above html page
in the same directory. Then change the following line to include a reference (link) to your own ogg stream
(live or pre-recorded) :

<param name="url" value="http://myserver.com/theora.ogv"/>

Now if you open the webpage in a browser it should play the video.

To use Cortado as a fallback, place the Cortado tag within the HTML5 video tag -- as in the following
example:

<video src="video.ogv" width="352" height="288">
 <applet code="com.fluendo.player.Cortado.class"
 archive="http://theora.org/cortado.jar" width="352" height="288">
 <param name="url" value="video.ogv"/>
 </applet>
</video>

Javascript Based Players

Some javascript libraries exist to handle fallback selection. These libraries enable simple embeding while
retaining fallback to many players and playback methods across many browsers

Mv_Embed

The mv_embed library is very simple to use. A single JavaScript file include enables you to use the html5
video tag and have the attributes be rewritten to player that works across a wide range of browsers and
plugins. More info on mv_embed

<script type="text/javascript" src="http://metavid.org/w/mwScriptLoader.php?class=mv_embed"></script>
...
<video src="mymovie.ogg" poster="mymovie.jpeg">

Itheora

ITheora is a PHP script allowing you to broadcast ogg/theora/vorbis videos (and audios) files. It's simple to
install and use. Itheora includes documentation on their site on how to use their player and skins.

Support in Browsers

Right now, latest versions of Mozilla Firefox, GNU IceCat and Epiphany browsers support Theora natively.
Opera and Google Chrome have beta versions available with Theora support. Safari supports the video tag,
but only supports codecs through QuickTime - that means by default it does not support Theora. With
XiphQT (http://xiph.org/quicktime) it is possible to add Theora support to QuickTime and thus Safari.

Manual Fallback options 18

http://metavid.org/wiki/mv_embed
http://itheora.org/
http://xiph.org/quicktime

Hosting on your own site
Like images or HTML pages you can put your Theora videos on your own webserver.

Mime Types

For videos to work they have to be served with the right mime type.

A mime type is the name given to a way of identifying different file types delivered over the internet. This
information is usually delivered with the data. The extra information identifying what kind of information is
being delivered is usually not readable my humans, but is interpreted by software so that the right kind of data
is delivered and processed by the right kind of software. The information is sent in the header of the
transported data.

A header is a small amount of meta data sent by one software to another which describes the kind of
information being transported. Typical header information includes the length, destination, mime type etc.

Mime types have two parts - the type and subtype (although the two together is just referred to simply as a
'type'). The type is written in the form type/subtype. There are only four categories of type - audio, video, text,
and application. There are innumerable subtypes.

The right mime type for Theora video is 'video/ogg'.

A current server should send the right information. If your server does not send the right headers, you have to
change the configuration of your webserver. However, you should first consider if you know enough about
configuring web services. If you are not feeling confident about this then perhaps enlist the support of a
friendly techie. Assuming you are using the Apache webserver (the most popular webserver on the web), and
you feel confident to change the server configuration, there are two ways you can do this :

you can add two lines to your apache webserver configuration1.
you might be able to provide the extra settings by placing a .htaccess file in your video folder2.

For the first strategy you need access to your web server configuration file (httpd.conf). In this case all files
being delivered by your webserver will send the correct information. This is the best solution. However if you
do not have access to your webserver configuration files (for example, if you are using a shared hosting
service) then you may wish to try the second strategy. The second strategy will only effect the video being
served from the same folder that you put the .htaccess file.

For both strategies you need to enter this information in the appropriate file:

AddType video/ogg .ogv
AddType application/ogg .ogg

For httpd.conf and .htaccess files you can place this information at the end of the file. If you do not have an
.htaccess file you can just create a blank file and add this information (no other information is required).

oggz-chop

Using Apache you can also get a lot more sophisticated. You can, for example, enable the use of URLs that
reference and playback only part of any given Theora video file. If you want to include only parts of your
video in your webpage or allow linking to a specific time in the video, you can use oggz-chop on the server.

Hosting on your own site 19

With oggz-chop installed you can address segments of the video by providing an offset parameter in the url.
To include second 23 to second 42, of your video you would use

 <video src="http://example.com/video.ogv?t=23.0/42.0"></video>

Installing oggz-chop requires the action module to be enabled in apache and oggz-chop installed on the server.
Describing how to enable the action module is beyond the scope of this document, so you had better consult
with an Apache guru, or read some documentation on this subject before attempting it.

However...if you know you have Apache2 installed and you have administrator access to your server you
could try this command to install the actions module :

 sudo a2enmod actions

Try it at your own risk...

oggz-chop is part of oggz-tools, you can (probably) install that with :

sudo apt-get install oggz-tools

With those installed you have to enable oggz-chop with those two lines in your apache configuration or
.htaccess file:

ScriptAlias /oggz-chop /usr/bin/oggz-chop
Action video/ogg /oggz-chop

Allowing Remote Access

Videos, unlike images, can not be embedded from remote sites, if those sites do not specifically allow this.
To allow other sites to include your videos on their domain add this line to your apache configuration or
.htaccess file:

Header Set Access-Control-Allow-Origin "*"

With this setting, the server responds with an additional header 'Access-Control-Allow-Origin: *' which
means that the videos can be embedded in any webpage. If you want to restrict access to the videos (for
example, to be only accessible from http://example.org) you have to change it to:

Header Set Access-Control-Allow-Origin "http://example.org"

Note that now, your videos can not be embedded on domains other than example.org. The
Access-Control-Allow-Origin header can also contain a comma separated list of acceptable domains.
https://developer.mozilla.org/En/HTTP_access_control has a more detailed description of http access control.

Serving Videos via a Script

As a final strategy. If you do not have control over your hosting setup but want to use videos anyway, it is
possible to use a small php or cgi script to set the right headers and serve the video. Such a script could look
like this:

<?php
$video = basename($_GET['name']);
if (file_exists($video)) {
 $fp = fopen($video, 'rb');
 header('Access-Control-Allow-Origin: *');
 header('Content-Type: video/ogg');

oggz-chop 20

http://example.org
https://developer.mozilla.org/En/HTTP_access_control

 header('Content-Length: ' . filesize($video));
 fpassthru($fp);
} else {
 echo "404 - video not found";
}
?>

If this script is placed as index.php in your video folder, you would use
http://example.com/videos/?name=test.ogv instead of directly linking to your video
(http://example.com/videos/test.ogv).

 <video src="http://example.com/videos/?name=test.ogv"></video>

Serving Videos via a Script 21

http://example.com/videos/?name=test.ogv
http://example.com/videos/test.ogv

Hosting Sites
There are many existing websites that will host your Theora content for free. You can then either link directly
to the content from your own webpages, or refer people to the content hosted on the external site.

TinyVid.tv

TinyVid (http://tinyvid.tv/) is a simple video sharing site set up by a member of the Theora community. You
can upload a video in any format to be encoded in Theora. It also supports the Firefogg extension for Firefox
(http://firefogg.org/) which lets you encode and upload at the same time!

The Video Bay

The Video Bay (http://thevideobay.org) is a new project by the people who run The Pirate Bay
(http://thepiratebay.org/). This site will transcode video from any format to Theora. The site's administrators
have a reputation for vigorously defending peoples' rights against the claims of copyright holders.

 Hosting Sites 22

http://tinyvid.tv/
http://firefogg.org
http://thevideobay.org/
http://thepiratebay.org

Archive.org

Archive.org (http://www.archive.org) is the website for the not-for-profit organization known as the Internet
Archive, that focuses on the preservation of digital media. To post to the archive, you must also license the
work under a Creative Commons (or similar) license. This is usually not a problem if you made the work
yourself, but maybe an issue if you used copyrighted material (eg, music within a video) within your work, or
if you are uploading something someone else made.

You can host Ogg Theora content at the Internet Archive for free, and then link to it from your own website.
Archive.org will convert your video to Ogg Theora and many other formats when you upload it.

Note: when you visit a page on archive.org, it will notify you if your browser supports the video tag. If you
see this message...

Simply reload the page and look for the message under the video icon:

The Video Bay 23

http://www.archive.org

At this point, click the link that says "try the new <video> tag" and click the following link to always use the
video tag. Then your videos will display in Theora. If you'd like a direct link to the Theora version of the
video, copy the "Ogg Video" link in the left sidebar. When you have that link, you can link directly to the
video and anyone with a compatible browser will see the video play:

Dailymotion

Dailymotion (http://dailymotion.com/) is one of the larger video sharing sites, and recently they have been
dabbling with Theora support. They have converted over 300,000 videos to Theora, and by applying for a
"motion maker" account (and getting approved) you can publish videos there using Theora. Their
experimental Theora portal here: http://openvideo.dailymotion.org/. Note: not all videos in the portal
currently display in Theora, so be sure to verify that your videos are working before relying on this service.

Archive.org 24

http://dailymotion.com/
http://openvideo.dailymotion.org/

Wikimedia Commons

Wikimedia Commons (http://commons.wikimedia.org/) is a website managed by the Wikimedia Foundation (
http://wikimediafoundation.org/), a non-for-profit organization that also manages Wikipedia. It is a database
of media files available for anyone to use for any purpose. It's an open website that any can contribute to,
which uses wiki software that allows for easy collaboration.

The site is managed entirely by volunteer editors, who also create the majority of its content by contributing
their own work. The community is multilingual, with translators available for dozens of languages. It only
collects material that is available under free content licenses or in the public domain. You can upload Ogg
Theora files to Wikimedia Commons.

Dailymotion 25

http://commons.wikimedia.org/
http://wikimediafoundation.org/wiki/Home

Wikimedia Commons 26

Introduction
Encoding is the process of creating a Theora file from raw, uncompressed source video material. In case the
source video material exists in some non-raw, compressed form, an intermediate decoding step is needed
before creating the Theora video. This Decoding-Encoding is often referred to as Transcoding, though often
Encoding is used as a synonym.

Software programs performing the encoding (resp. transcoding) are called encoders. Various Theora encoders
exist, for example ffmpeg2theora and vlc, to name just a few.

Before encoding the user has to decide on at least two parameters:

the image quality of the created Theora file•
the audio quality•

Depending on the encoder used, more options might be available to control the encoding process:

clipping a configured amount of the frames' borders during encoding•
rescaling the video resolution•
changing the frame-rate of the video•
handling the video-audio synchronisation•
setting the keyframe-interval•

Video Quality, Bit-Rate and File Size

Most Theora encoders allow the user to directly specify the subjective quality of the encoded video, usually
on a scale from 0 to 10. The higher the quality, the bigger the resulting Theora files. Most encoders can
alternatively be configured to encode for a given average target bitrate. While this option is useful for
generating Theora video files for streaming, it sometimes yields sub-optimal quality.

Recent versions of some Theora encoders feature a two-pass encoding mode. Two-pass encoding allows the
encoder to hit a configured target bit-rate with optimum video quality, and should thus be comparable to
quality controlled encoding, though it comes at the cost at taking twice the encoding time. By nature live
videos can not be generated with two-pass encoding.

Video Resolution and Frame-Rate

There can be good reasons to further reduce the height and width (video resolution) of your video when
encoding to Theora.

If the Encoder produces too large files, even at low quality settings around 0, then reducing the video
resolution will help reduce the file size further

•

If your required maximum file size requires a very low quality setting of 0..3, leading to an
unacceptable perceived quality then reducing the video resolution will mean more data can be
dedicated to improving the quality

•

If the playback of the encoded video should work even on low-performance computers then a lower
video resolution will assist this

•

If your source video material has resolution higher than standard-definition video. The Theora video
codec is not designed for high-definition video and might not perform very well at it so it would be
better to reduce the video resolution

•

If your source video material has an unusually low resolution, and you can spare the bits, increasing the video
resolution during encoding might have a positive effect on overall video quality.

Introduction 27

Adjusting the frame-rate during encode is generally a bad idea, as it often leads to jerking, reducing perceived
quality by a large amount. However, if you require a very low target file size, try reducing the frame-rate to
exactly half the source frame rate. This might do the job of sufficiently reducing file size without degrading
quality to an unacceptable level.

Clipping the Frames in the Video

Sometimes video source material does not make use of the full video frames, leaving black borders around the
video. It is a good idea to remove black or otherwise unused parts from the video as this usually improves the
quality and file size of the encoded Theora file. If possible, try to keep video width and height multiples of 16.
The Theora format is capable of, but not very efficient at, storing video using other arbitrary frame sizes.

Video-Audio Synchronization

In an ideal world, the encoder would just copy the video-audio synchronization of the source video material to
the created Theora file. In practice however, this is sometimes just not possible. Theora video files must
adhere to a constant frame rate throughout the full file. Also the playback speed of the audio tracks is constant
in Theora. Some source video material, however might not have a 100% constant frame rate. Sometimes
frames are just missing from the source video due to recording errors or as a result of using video cutting
software.

In these cases, the encoding process must actively adjust audio-video synchronization. This is done either by
duplicating and/or dropping frames in the video, or by changing the speed of the audio tracks.

Keyframe-Interval

Many Theora encoders allow changing a parameter named keyframe interval. A larger keyframe interval
reduces the target file size without sacrificing quality. Keyframes are those frames in the video, which a
player can directly seek to during playback. To seek to other points in the video, all frames from the last
keyframe on have to be decoded first. In a video with 24 frames/second, a keyframe interval of 240 implies
that direct seeking is only possible with a granularity of 10 seconds. Also cutting and concatenation of the
encoded video will be limited to the keyframe granularity.

As a rule of thumb, never set the keyframe interval to more than 10 times the target video frame rate.

Video Resolution and Frame-Rate 28

Firefogg
Firefogg is the name of an extension to the Firefox webbrowser that adds support for encoding your video
files to Theora using a nice web interface. It also enables web-sites to provide a video-upload service that
takes videos from your computer, converts them to Theora on-the-fly uploading the generated Theora file to a
website.

Installation

Firefogg requires the Firefox web browser, at least version 3.5. If your version of Firefox is older, or in case
you do not have Firefox installed at all, visit www.mozilla.com to download an up-to-date version.

Once you have a recent Firefox version, use it to visit the Firefogg homepage at www.firefogg.org:

Now click on Install Firefogg. At the top of the page, Firefox now asks you to allow installation of the new
software:

Firefogg 29

http://www.mozilla.com
http://www.firefogg.org

Click on Alllow, to pop up the following dialog:

Click on Install Now. After installation, you are asked to restart Firefox. Click on Restart Firefox to proceed.

Encoding your first video

To encode videos with Firefogg, you need an internet connection. Parts of the encoding software reside on the
internet and will not be installed to your computer.

The encoding software is started by visiting http://firefogg.org/make. The following site shows up:

Installation 30

http://firefogg.org/make

Click on Select File, which pops up a file dialog allowing you to select the source video file to encode. In this
example we are using the video my_source_video.mp4. After selecting the file, you are brought to a dialog
that asks you for tuning encoding parameters:

For now, just select Save Ogg. You are asked to select the name of the Theora file to create. Remember. We
select the name my_theora_video.ogv (remember, the correct file name extension for Theora videos is .ogv).
Now encoding starts, using the default set of parameters:

Encoding your first video 31

Now wait for the encoding to progress to 100% and you're done.

Advanced Encoding Options

Using the default set of parameters for encoding video yields very small Theora files optimized for web
streaming. Perceived video quality will actually be quite low for most tastes. But wait, Firefogg is as
advanced as most other Theora encoders. After a little tuning, very high quality videos can be easily created.
Tuning options are available on the web page below the Save Ogg button.

The easiest way to configure encoding is by selecting one of three presets available from the Preset menu:

Advanced Encoding Options 32

The first two presets called Web Video Theora and Low Bandwidth Theora are both optimized for streaming
video over the internet. If you intend to play back the created Theora file solely from CDs, USB sticks or
your computer's hard disk, you should try to not use them. Go for the High Quality Theora preset instead.

Custom Settings

More details of the encoding process can be configured by selecting Custom Settings and manually adjusting
lower-level options in the other available menus. Lets have a look at the most important menu, Basic Quality
and Resolution Control:

Custom Settings 33

Here you can control the quality of the created Theora file, and also choose to change the frame size of the
encoded video. Encoding a video for a target quality (instead of a target bit rate) is the preferred encoding
mode for Theora, so in most cases you won't want to try the encoding options in the other menus.

Other Uses of Firefogg

Once installed, Firefogg can be used on websites that support it. There is a list of sites that support Firefogg at
http://firefogg.org/sites.

Other Uses of Firefogg 34

http://firefogg.org/sites

Encoding with VLC
The VLC media player (www.videolan.org) allows easy encoding of video files to Theora. Encoding can
either be performed via the graphical user interface (GUI), or from the command line. The following
instructions have been written for use with VLC version 1.0.1 running on Ubuntu. Other versions may differ
in details, though the overall process will be the same.

Using the GUI

When you start VLC, you are immediately greeted by its main window:

In the Media Menu select Convert/Save. This brings you to the following dialog:

Under File Selection click Add and select the source video file for encoding.Then click on Convert/Save at the
bottom. This leads you to the encoding dialog:

Encoding with VLC 35

Under Destination click Browse and select the location and name of the Theora file that you want to create.
Remember that the correct file name extension for a Theora file is .ogv. Under Settings set the Profile to
"Video - Theora + Vorbis (OGG)".

Then press the Start button. This starts the encoding process and brings you back to VLC's main dialog:

At the window's bottom, the text "Streaming" is now displayed. This indicates that it is busy encoding your
file. The slider will slowly move to the right as encoding progresses. Once encoding is done, the slider jumps
back to the left and the "Streaming" display disappears.

Advanced Options

If you are not satisfied with the encoding result, try adjusting some of the more advance encoding parameters.
In the previous encoding dialog, before hitting Start, press the button with the "tool" icon, just to the left of
the profile selection:

This opens up a new dialog, with the 4 tabs, labeled; "Encapsulation", "Video codec", "Audio codec" and
"Subtitles". Make sure you do not change any parameters under "Encapsulation". The video encoding options
you need are under the "Video codec" tab, shown below:

Using the GUI 36

If your encoding result's video quality was too low, try increasing Bitrate. If your video source material has a
very high resolution, try setting Scale to 0.5 to encode at half the original resolution. As of this writing,
changing video resolution fails to work properly for some source material, when using VLC 1.0.1.

Encoding from the Command Line

If you are encoding a number of files to Theora, clicking through the VLC dialog windows can become
tedious and error-prone. Here VLC's command line interface comes to the rescue. While not as intuitive as the
GUI, it allows you to exactly repeat an encoding process with constant parameters.

Use the following command to encode your source video, (in the example below the files are called
"my_source_video.mp4" to "my_theora_video.ogv" you can of course, use whatever name you want) with the
same parameters as used in the GUI example above:

vlc my_source_video.mp4 \
 --sout="#transcode{vcodec=theo,vb=800,scale=1,
 deinterlace=0,acodec=vorb,ab=128,channels=2,\
 samplerate=44100}:standard{access=file,mux=ogg,\
 dst='my_theora_video.ogv'}"

All the parameters that had previously been specified in the advanced encoding options dialog window, are
now given in text form. The only options whose meaning might not be immediately obvious are vb which
means video bitrate and ab, which refers to the bitrate of the encoded audio.

Recommended Encoding Options

The command line shown above merely utilizes the parameter set provided by the GUI interface, which is in
no way optimized for Theora encoding. We can do much better by using options that are exclusively available
on the command line only. A better option might be to use the following command line as a basis for
encoding. Tweak it to suit your needs:

vlc my_source_video.mp4 \
 --sout-theora-quality=5 \
 --sout-vorbis-quality=1 \

Advanced Options 37

 --sout="#transcode{venc=theora,vcodec=theo,\
 scale=0.1,deinterlace=0,croptop=0,\
 cropbottom=0,cropleft=0,cropright=0,\
 acodec=vorb,channels=2,samplerate=44100}\
 :standard{access=file,mux=ogg,\
 dst='my_theora_video.ogv'}"

In this example video and audio quality are specified as numbers in the range 0 (low quality) up to 10 (highest
quality). In case you want to remove black or noisy borders around the video, adjust the options croptop
through to cropright.

These examples require that your VLC installation comes with the VLC Theora plugin. Verify the plugin's
presence by typing:

vlc -p theora

Even if this prints out "No matching module found" it may still be possible to encode to Theora, by using the
ffmpeg plugin that supports Theora as well. However, the advanced "--sout-theora-quality" option is not
available with ffmpeg.

Why not to use the GUI

The Theora codec works best when encoding for a specified video quality. Encoding for a given target bitrate
will always give inferior results for a file of the same size. Unfortunately there is no way to specify target
video quality via the GUI, which is why you just shouldn't use it for any kind of professional encoding work.
Also, note that you cannot crop borders of the video when encoding from the VLC GUI.

Keep in mind that this chapter was written using the 1.0.1 version of VLC, which was current at the time of
this writing. Newer versions may outgrow these limitations.

â��

Recommended Encoding Options 38

ffmpeg2theora
ffmpeg2theora is a very advanced Theora encoding application. The advanced functionality comes at the price
of having to use a command line, as no graphical user interface is provided. For GNU/Linux, Mac OS X and
Windows download ffmpeg2theora from http://v2v.cc/~j/ffmpeg2theora/download.html. If you are running a
recent version of GNU/Linux, chances are good that your distribution already comes with software packages
for ffmpeg2theora, that can be installed with the distribution's software packet manager.

Basic Usage

Open a command prompt and enter:

ffmpeg2theora my_source_video.mp4 -o my_theora_video.ogv

 This encodes the source video file "my_source_video.mp4", creating a new Theora video file named
"my_theora_video.ogv".

Adding Parameters

When you are unhappy with the result of encoding, it's time to start tuning encoding parameters. We'll start
with setting the video quality of the encoded video. Quality is given as a number in range 0 (lowest quality,
smallest file) up to 10 (highest quality, largest file). Try this to encode at a high video quality of 9, and a very
high audio quality of 6:

ffmpeg2theora my_source_video.mp4 -o my_theora_video.ogv \
 --videoquality 9 --audioquality 6

The following example exposes the basic encoding parameters. Just copy-paste and adjust it to your needs:

ffmpeg2theora my_source_video.mp4 -o my_theora_video.ogv \
 --videoquality 9 --audioquality 6 \
 --croptop 0 --cropbottom 0 --cropleft 0 --cropright 0 \
 --width 720 --height 576 \
 --title "Video Title" --artist "Artist Name" --date "1997-12-31"

If you do not wish to scale the video's frame size, drop the --width and --height options. There is no way to
specify a scale factor, so check the input video's size and computing the target frame size as required. In most
cases it is better to only specify one of the --width or --height options, the missing option is then automatically
adjusted to a correct value.

Advanced Options

Ffmpeg2theora supports a multitude of other parameters for advanced use, which cannot all be described in
detail here. To get an overview of all available options and short descriptions, type:

ffmpeg2theora --help

Depending on the operating system you are using, you might be able to open up the ffmpeg2theora manual by
typing

man ffmpeg2theora

 The following options often prove useful:

 ffmpeg2theora 39

http://v2v.cc/~j/ffmpeg2theora/download.html

--sync

Copy any audio-video synchronization of the source video file to the destination Theora video. Depending on
the source video used, this may fix problems of audio-video delay drift introduced by the encoding process.

--keyint <N>

Set the keyframe interval, i.e. the number of frames between keyframes, of the generated file. Large values of
<N> lead to a reduced file size, however seeking and cutting does not work well with Theora files that have a
large keyframe interval.

 --framerate <N>

Set the frame rate of the generated video file. In case you are attempting to create Theora videos with
extremely small file size, try specifying half the input video's framerate.

 --starttime <N> --endtime <M>

These two options allow you to copy only a part of the source video when encoding. Specify <N> and <M>
as the number of seconds from the start of the video.

Two-Pass Encoding

The upcoming version 0.25 of ffmpeg2theora is going to support a two-pass encoding mode, which is
described in this section. Once version 0.25 is released, just download it from
http://v2v.cc/~j/ffmpeg2theora/download.html. The examples given below are not going to work with older
versions.

Why Two-Pass Encoding

A lot of hype is surrounding two-pass encoding. Many people assume that you need to encode in two passes
to achieve a constant subjective quality throughtout a video. This is how it used to be for many non-free video
codecs such as DivX. However, as we have seen, ffmpeg2theora is well capable of encoding for a constant
target quality in a single pass using option --videoquality.

The only real advantage of using two-pass mode over using --videoquality, is the ability to create a Theora
video of a given file size. Imagine you want to encode a video, which must fit onto a single CD with 700 MB
of available storage. You want a constant video quality, but in advance you can't possibly guess which
--videoquality will exactly hit 700 MB. Using two-pass mode exactly achieves that.

Using Two-Pass Mode

So you want to encode "my_source_video.mp4" into a Theora video, with a file size of exactly 700 MB.
ffmpeg2theora does not allow you to directly specify the size of the encoded file. Instead you specify the
average video bitrate for the video. Note that the audio is also going to require some data, which has to be
taken into account.

To decide on an average video bitrate for the file we first need to find out the duration of the source video
"my_source_video.mp4". Ffmpeg2theora can help us with that. Type:

ffmpeg2theora --info "my_source_video.mp4"

Which prints, among other information:

{

--sync 40

http://v2v.cc/~j/ffmpeg2theora/download.html

 "duration": 2365.165100,
 "bitrate": 6437.331055,
 [..]

}

 The duration shown is in seconds. If we divide the available 700 MB of space by the 2365 seconds to encode,
we come to an average byte rate of 296 kByte/s. Multiplied by 8 we get the average bit rate of 2368 kBit/s.

We cannot use the full 2368 kBit/s for our video only. We also have an audio track, that is going to take 128
kBit/s. The average video bit rate we can use is thus 2240 kBit/s. Of this we subtract another 1% to account
for any overhead in the encapsulation that is used to contain the video and audio tracks. This leaves us with
2218 kBit/s for the video and 128 kBit/s for the audio.

The following command is going to perform the two-passs encoding, creating the Theora video file
"my_theora_video.ogv":

ffmpeg2theora my_source_video.mp4 -o my_theora_video.ogv \
 --two-pass --videobitrate 2218 --audiobitrate 128

Note that unlike other two-pass encoders, only one invocation of the ffmpeg2theora command is required. If
you require more control, performing cropping, scaling etc., feel free to copy-paste other options from the
examples given in previous sections.

Using Two-Pass Mode 41

Thoggen
Thoggen (http://www.thoggen.net/) is a simple, easy to use DVD extraction program for GNU/Linux, to
create Theora videos. Note that only the video part of DVDs can be encoded; any menus present on the DVD
are going to be stripped out.

Encoding a DVD using Thoggen involves two steps:

Selecting the DVD titles to extract and encode1.
Configuring parameters of the encoding process 2.

If you do not have Thoggen installed you will have to first do this of course. If you are running Ubuntu simply
type this in a terminal window :

sudo apt-get install thoggen

You will be asked for your password, and then Thoggen will be installed.

Selecting the DVD Titles to Encode

Upon starting, Thoggen will automatically detect any DVD media present in any DVD drive, presenting a list
of titles it found on the DVD:

You are asked to select the titles that are going to be extracted and converted to Theora. The longest title is
selected by default, as this is usually the main video. If this is not what you actually want, change it to suit
your needs.

Note that you may also convert from a DVD image on your hard drive, instead of directly from a DVD. To do
this select the image location from the 'File' menu. The same list of titles will then be displayed, as if it was
taken directly from the physical DVD.

When done selecting, press OK and you will be taken to the next dialog.

Thoggen 42

http://www.thoggen.net
http://www.thoggen.net/
http://www.thoggen.net

Configuring the Encoding Process

The following dialog now allows you to specify parameters of the encoding process:

If you selected more than one video in the previous step, this window will be presented once for each of them.
For multi-language DVDs use this dialog to select which languages to include. Select the quality and video
size, and where to save the video. If unsure which option to choose, just go with the defaults. Note that video
quality is specified as a number in range 1 (lowest quality, smallest output file) to 63 (highest quality, largest
file)

When you are happy with the settings, press OK, to start the encoding. You are then presented with a
slideshow preview of the video along with a progress bar, while waiting for the encoding process to finish.

You can now use VLC, or any other player supporting Theora, to view your copy of the DVD, without having
to actually search for and insert the DVD into the drive whenever you want to watch your movie.

A Note on Cropping

Thoggen can remove borders at the left, right, top and bottom when encoding the DVD, available from the
Configure Cropping button. It is often actually a good idea to remove about 5% the movie's width and height.
This is due to the fact that DVDs are manufactured with ancient analog televisions in mind, hence there are
usually borders around the movie. Older DVDs sometimes contain noise and artifacts in the movie borders,
only visible when playing the DVD on a PC.

Configuring the Encoding Process 43

For a typical DVD resolution of 720x576 pixels, try cropping 8 pixels on the left, right, top and bottom,
leaving a total frame size of 704x560.

A Note on Cropping 44

Subtitles
Most videos include people speaking in a certain language; to make these video accessible and understandable
to a global audience the video must be subtitled or dubbed. Subtitles are by far the easiest to produce: audio
dubbing requires time and software expertise, but you can create subtitles with just a video player and a text
editor.

Finding Subtitles

Before starting a subtitling translation project, it's worth searching for existing subtitles, particularly if the
video is a well-known or commercial work. For example, if you are including a scene from an American
documentary in a video, there are resources to search for subtitles for this material. However, outside of
well-known video and films, pre-created subtitles are rare, and subtitles available under an open license are
even harder to find.

There are a few issues that come up when searching for subtitles. For cinematic films, for example, there are
almost invariably many different versions of the film. One can imagine that any extra scene, extended title
sequence, or formatting change can alter the timing of subtitles onscreen which many times renders subtitles
useless. Therefore, it is important to find subtitles that are accurate for the audio of the particular film version.
There are free software tools like Sub Downloader (http://www.subdownloader.net/) that help with this
problem by matching subtitle sets to specific film versions. Another issue that comes up is the file format of
the subtitle file itself. There are different formats for different types of video as well as different types of
physical media (HD, DVD, Blu Ray etc.) which affect the selection of subtitles for a given piece of film.

The following are resources for finding subtitles :

OpenSubtitles.org: http://www.opensubtitles.org/en•
TinyTM: http://tinytm.sourceforge.net/ •
DivX Subtitles: http://www.divxsubtitles.net/ •
AllSubs.org http://www.allsubs.org•

Subtitle File Formats

A subtitle file format specifies the format of a file (text or image) containing the subtitle and timing
information. Some text-based formats also allow for specifying styling information, such as colors or location
of the subtitle.

Subtitles 45

http://www.subdownloader.net/
http://www.opensubtitles.org/en%20
http://tinytm.sourceforge.net/%20
http://www.divxsubtitles.net/
http://www.allsubs.org%20

Some subtitle file formats are:

Micro DVD (.sub) - a text-based format, with video frame timing, and no text styling1.
Sub Rip (.srt) - a text-based format, with video duration timing, and no text styling 2.
VOB Sub (.sub, .idx) - an image-based format, generally used in DVDs 3.
Sub Station Alpha / Advanced Sub Station (.ssa, .ass) - a text-based format with video duration
timing, and text styling and metadata information attributes.

4.

Sub Viewer (.sub) - a text-based format with video duration timing, text styling and metadata
information attributes.

5.

We will only focus on the subtitle format Sub Rip (.srt), which is supported by most software video players
and subtitle creation programs. SRT files can also be created and edited by text editors, or more specialised
software like Jubler, GnomeSubtitle, Gaupol and SubtitleEditor.

Editing SRT files

An SRT subtitle file is just a text file that is formatted in a simple way so the player can read it and co-relate
subtitles to the time they should be played in the video. SRT is a very simple, widely used subtitle format. If
you find an existing SRT file for the video you need to subtitle, it's easy to create subtitles for other languages
when you know how an SRT file works.

A SRT file is made of a list of lines looking like this:

 1
 00:03:05,260 --> 00:03:07,920
 Hello, world.

The first line is the number of the subtitle, incrementing from 1 to as many as needed. The second line is the
time at which the subtitle appears and disappears in the video, and is recorded in
hours:minutes:seconds,milliseconds. The third line, and any lines after it up to the first blank line, are the
subtitle text. One blank line is required to mark the end of the subtitle text. You can add as many such triplets
as you need for the remaining subtitles.

For the above example, it just means that the first subtitle shows up at 3 minutes 5.26 seconds into the video,
disappears at 3 minutes and 7.92 seconds, and reads "Hello, world". That's it.

Creating subtitles from scratch

To create a subtitle file from scratch, you may want a more advanced tool that makes it easier to assign
subtitles to specific points in a video. Jubler, GnomeSubtitle, Gaupol and SubtitleEditor are all free software
tools, and worth checking out.

FLOSS Manuals has created a complete guide to Jubler (which is both free software and cross-platform). You
can find the guide here: http://en.flossmanuals.net/jubler

Subtitle File Formats 46

http://en.flossmanuals.net/jubler

Distribution
Using a subtitle format like .SRT means that you can distribute subtitles for many different languages without
distributing a different version of your video for each language. You just need to make separate .SRT subtitle
files for every required language, and make those files available on the web.

This strategy is very common in the world of subtitles. Including the subtitles as a separate files allows that
file to be accessed, changed, or removed without affecting the video file itself. The disadvantage of this
technique is that the subtitle file format becomes an issue. Players must accept the format in order to properly
display the subtitles. And users must know a little bit about how subtitles work in order to play the subtitle
files correctly. If you're distributing .SRT files with a downloadable video, be sure to include some
instructions on how to retrieve and play the subtitles. If you're distributing video on the web, you can use
HTML5 and javascript to offer different subtitle tracks on your webpage.

Its also possible to explore embedding multiple .srt files within the video file itself. This provides the user
with the option to choose from among the translations you make available (or to display no subtitles at all)
without the need for additional subtitle files. Patent-unencumbered video container formats that support this
include Matroska Multimedia Container (MKV) and the Ogg container format.

Distribution 47

Embedding Subtitles
If you want your video file to contain a subtitle file, so you don't have distribute the .srt file separately, you
need to embed the subtitle file into the video. The video encoding tool ffmpeg2theora has a few command
line options to include subtitles in your video.

ffmpeg2theora us available for most operating systems, including Windows, Mac OS X, and GNU/Linux.

Related to subtitles three commands are important:

--subtitles pointing to a subtitle file in SRT format,•
--subtitles-language to define the language of the subtitles•
--subtitles-encoding to specify the character set of the subtitles file used.•

Lets have a look at some of the required options for using ffmpe2theora for embedding srt files in a Theora
video file.

subtitles-language - This option sets the specified language. Every language has a standard code, which
helps people describe a language, whatever their own language. For example, in English the language spoken
in Germany is called German, but in Germany, it's called Deutsch. To prevent confusion, there is an
international standard (ISO 639-1) that represents each language with a two letter code. In our example, the
code for German is 'de'.

subtitles-encoding - This option specifies the encoding standard for text, a complexity necessary given
varying strategies for representing the wide range of characters used by all languages on earth. For a long
time, computers used 7-bit character sets of 127 characters to represent the alphabet and other writing
symbols. For example, US-ASCII has 94 printing characters and 33 control codes. Numerous 8-bit character
sets, with 256 codes, have appeared since then for alphabets and syllabaries, and several encoding systems
using 16-bits for writing systems based on Chinese characters. However, 7 or even 8 bits is not enough space
for all the typographical symbols in even one alphabet, much less for the dozens of writing systems in use
today. People created the Unicode Character Set to support all languages at once. The UTF-8 encoding of
Unicode is specified for use "on the wire", that is, in all external communications between systems.

However, a lot of people still use old encodings. The bad thing about these is that they overlap, using the same
set of codes for completely different characters. The usual result of rendering a text according to an incorrect
encoding is gibberish. So, by default, subtitles are expected to be in Unicode UTF-8 encoding. If they are not,
you need to tell ffmpeg2theora. If you're writing in English, chances are you'll be writing in ASCII,
ISO-8859-1 (Latin-1), or possibly Windows code page 1252. By design, US-ASCII is a subset of UTF-8, so
you'll be OK there, but you will get into trouble if you use any extension of ASCII in a Unicode context.

Example commands for subtitle embedding

Here are a few examples that take an existing mp4 video file (input.mp4) and output a ogg video file
(output.ogg) with embedded subtitles :

If you have a subtitles file in English (the language code for English is 'en'):

ffmpeg2theora input.mp4 --subtitles english-subtitles.srt --subtitles-language en -o output.ogv

If you have a subtitles file in Spanish, encoded in latin1 :

ffmpeg2theora input.mp4 --subtitles spanish.srt --subtitles-language es --subtitles-encoding latin1 -o output.ogv

Embedding Subtitles 48

There are other subtitles options for ffmpeg2theora, but these are the main ones.

Adding subtitles to an existing video

If you have a Theora video with no embedded subtitles, it's easy to add some too, without the need to encode
the video again. Since each subtitles language is stored in the Ogg file separately, they can be manipulated
separately.

Internally, subtitles embedded in an Ogg file are encoded as Kate streams. Such streams are created by
ffmpeg2theora, but can also be created 'raw' from a SRT file. The kateenc tool does this. On Ubuntu kateenc
is part of the kate-tools package. To install do this:

sudo apt-get install libkate-tools

For instance, the following creates a new English subtitles stream from a SRT file. Remember, the code for
English is 'en':

kateenc -t srt -o english-subtitles.ogg english.srt -c SUB -l en

Now you've got a single subtitles stream, which you can add to your Theora video:

oggz-merge -o video-with-subtitles.ogv original-video.ogv english-subtitles.og

On Ubuntu oggz-merge is part of the oggz tools package, to install, do this:

sudo apt-get install oggz-tools

In fact, the oggz tools allow more more powerful manipulation of all the different tracks in the video, so you
can add more audio languages too, etc.

Example commands for subtitle embedding 49

Playing Subtitles
There are several easy ways to play back subtitles with an Ogg Theora video.

VLC

First, install VLC from the website (http://videolan.org/vlc) if you haven't already. These instructions assume
you have a file or DVD with subtitles which you want to display while you are playing the Video.

There are three ways you may want to use VLC to display subtitles.

From a DVD1.
From a Multilingual file (ie Matroska) 2.
From a separate subtitle file which is distributed with the Video file.3.

Play subtitles on a DVD disk

To do this put the DVD disk into your DVD drive. Open up VLC player and select File > Open Disk.

Enter the DVD Drive letter. It may appear automatically. On Windows this may be drive D:, and on
GNU/Linux something like /media/dvd.

Then click OK. The menu page of your DVD should appear. Click on the video you want to watch. Then
when the video starts quickly right hand click the mouse on the Video image. Select the Subtitle track you
wish to view.

Playing Subtitles 50

http://videolan.org/vlc

The subtitles should then appear on screen.

Play subtitles in Matroska files

The process for this is exactly the same as above except when starting the process you select File > Open
File. You then see this screen.

You should then click on the Browse button to select the video file you want to play. If this file is a matroska
file with an *.mkv extension then you can click OK after browsing for the file as the file already has the

Play subtitles on a DVD disk 51

subtitle infomation.

Then Select the subtitle language stream by right clicking the video screen and selecting Subtitle Track >
and choose the language

Play External Subtitles

If you want to play an external subtitle file for example a srt file. Select File > Open File

In the Open box click the Browse button and choose your video file.

Play subtitles in Matroska files 52

Then put a tick in the box Use a subtitle file, and click Browse to locate your external subtitle file.

Then Select the subtitle language stream by right clicking the video screen and selecting Subtitle Track >
and select the track of subtitles (for an external file like an srt file there will normally only be one track).

Play External Subtitles 53

Publishing
Depending on how you created the subtitles - embedded in the video or as a separate .srt file - you have
different options to publish it online with your video.

Hosting external subtitle files along with video on a web
server

We will assume you have one or more subtitles (in SRT format) and the video itself.

HTML5 video tag and Javascript

You can offer a web preview of Theora video alongside a given .srt with the help of jquery.srt.

Firstly, notice below that we will integrate JQuery, a popular GPL Javascript library (http://jquery.com/), and
an example Javascript implementation of displaying subtitles in a webpage from a SRT file available at:
http://v2v.cc/~j/jquery.srt/jquery.srt.js

A simple HTML document excerpt is shown below, which includes the modification to include the Javascript
files and to reference to your subtitle file. Only one subtitle file can be referenced at a time, unless you start
developing further with Javascript.

It is a small script that can load an srt file and display it inside a div on your page, under the video or as an
overlay.

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="jquery.srt.js"></script>

<video src="http://example.com/video.ogv" id="video" controls>
</video>
<div class="srt"
 data-video="video"
 data-srt="http://example.com/video.srt" />

this example could look like this on your page.

Publishing 54

http://jquery.com/
http://v2v.cc/~j/jquery.srt/jquery.srt.js

For another example using subtitles in several languages, you can have a look at this demo from Mozilla
http://people.mozilla.com/~prouget/demos/srt/index2.xhtml

Another example using multiple subtitles and providing an interface to select them can be found at
http://www.annodex.net/~silvia/itext/.

Hosting video with embedded subtitles on a web server

If you have Ogg files with embedded subtitles and want to display those in the browser, you can use the video
tag right now. However, not all browsers support the video tag. Cortado, a Java plugin that can play Theora
videos, also has support for embedded subtitles, and it works in all browsers that have the Java installed. You
can get the latest version of Cortado from http://www.theora.org/cortado/

<applet code="com.fluendo.player.Cortado.class" archive="cortado.jar"
 width="512" height="288">
 <param name="url" value="video.ogv"/>
 <param name="kateLanguage" value="en">
</applet>

To use subtitles with Cortado. you pass it the url to the video with embedded subtitles and in the same way
you pass a parameter for the subtitles track to use. The easiest way is to select the language you want via the
kateLanguage parameter:

 <param name="kateLanguage" value="en">

It is also possible to change or disable the subtitle via Javascript. If you want to switch to French subtitles, you
could set the kateLanguage option from your script by calling:

 document.applets[0].setParam("kateLanguage", "fr");

Hosting external subtitle files along with video on a webserver 55

http://people.mozilla.com/~prouget/demos/srt/index2.xhtml
http://www.annodex.net/~silvia/itext/
http://www.theora.org/cortado/

Web Video Accessibility
When we talk about Web video here, we explicitly refer to video published in Ogg Theora/Vorbis format
inside a Web browser that supports the HTML5 video element.

Accessibility of video refers to several different aspects of usability of video, depending on what user group
we are looking at. So, before diving into the different aspects and how they can be supported, we list the user
groups and their specific requirements.

Accessibility user groups

Non-native speakers: when watching a video in a foreign language, it is impossible to follow. For
this purpose, subtitles have been invented. Subtitles are time-aligned transcriptions of the spoken
words in a video, which have been translated into different non-native languages. Alternatively, an
audio track in the native language can also be created, which then replaces the original audio track.
This is called dubbing.

1.

Deaf or hard-of-hearing (HoH):when a HoH person is watching a video, it is impossible to follow
because none of the sounds and spoken words are perceived. Captions are time-aligned transcriptions
of the spoken words and the noises, sound effects, music and other sounds in a video.

2.

Blind or vision-impaired (VI): when a VI person is trying to "watch" a video, without special help it
is not possible to interact with the video player controls in the first place, and secondly it is impossible
to follow the video because none of the visual displays are translated into signals that VI person can
perceive. Firstly then it is important to make the video controls accessible. Secondly it is important to
provide a time-aligned description of the visual channel. There are two senses that can be used to
replace the visual channel: hearing and touch. In order to provide an aural representation of the visual
content, we can either create a spoken audio description (AD) through an additional audio track for
the video, or we can create a textual audio description (TAD) that a screen reader will read out in a
time-aligned manner. Similarly, the TAD can also be output to a braille device, such that a VI person
can perceive the visual channel through touch.

3.

Accessible HTML5 video controls

A key accessibility challenge for browser vendors with the HTML5 video element is to make the default
controls accessible through the keyboard. The HTML5 video element provides an attribute called controls
which requests the browser to create default controls on top of the video.

Here is what the current specification says:

â��This user interface should include features to begin playback, pause playback, seek to an arbitrary
position in the content (if the content supports arbitrary seeking), change the volume, and show the media
content in manners more suitable to the user (e.g. full-screen video or in an independent resizable
window).â��

In Firefox 3.5, the controls attribute currently creates the following controls:

play/pause button (toggles between the two)•
slider for current playback position and seeking (also displays how much of the video has currently
been downloaded)

•

duration display•
roll-over button for volume on/off and to display slider for volume•
FAIK fullscreen is not currently implemented•

Web Video Accessibility 56

http://en.flossmanuals.net/TheoraCookbook/HTML5

Further, the HTML5 specification prescribes that if the controls attribute is not available, â��user agents may
provide controls to affect playback of the media resource (e.g. play, pause, seeking, and volume controls), but
such features should not interfere with the pageâ��s normal rendering. For example, such features could be
exposed in the media elementâ��s context menu.â��

In Firefox 3.5, this has been implemented with a right-click context menu, which contains:

play/pause toggle•
mute/unmute toggle•
show/hide controls toggle•

When the controls are being displayed, there are keyboard shortcuts to control them:

space bar toggles between play and pause•
left/right arrow winds video forward/back by 5 sec•
CTRL+left/right arrow winds video forward/back by 60sec•
HOME+left/right jumps to beginning/end of video•
when focused on the volume button, up/down arrow increases/decreases volume.•

To make these controls accessible to VI users, Firefox exposes them to screen readers using MSAA or
AT-SPI. It implies having to use focus mode for now. Exposure through iSimpleDOM interfaces on Windows
(http://www.marcozehe.de/2009/06/11/exposure-of-audio-and-video-elements-to-assistive-technologies/) are
still in development. Once in focus mode, the keyboard shortcuts listed above make the video controls
accessible.

Providing video accessibility data

As described above, accessibility for a particular video is provided through creating additional data that
accompanies the original video. A fully accessible video may consist of all of the following:

original video track•
original audio track•
audio tracks that contain dubs in foreign languages•
captions in all languages (which also covers the need for subtitles)•
audio tracks that contain spoken audio descriptions in all languages•
textual audio descriptions in all languages•

All of the mentioned data that provides accessibility to video is time-aligned with the original video. It can be
provided in two different ways:

out-of-band (external files): as a separate text or audio file that relates to the original video. A
typical example of out-of-band accessibility data are subtitles in srt files (see section on subtitles).

•

in-line (embedded): multiplexed together with the original video inside a single binary file. A typical
example of in-line accessibility data are srt subtitles encoded in Kate tracks in Ogg (see section on
embedding subtitles).

•

Publishing accessible video on the Web

The current HTML5 specification does not contain explicit means to publish, style, and position accessibility
data for audio and video. The suggestion is to use in-line accessibility data and have the video decoder deal
with it. Also, the suggestion is to use javascript where there is a necessity for out-of-band accessibility data.
There is work in progress on improving this situation. The idea is to expose accessibility data to the Web
browser in the same manner independent of whether the data originates resides in-line or out-of-band.

Accessible HTML5 video controls 57

http://www.marcozehe.de/2009/06/11/exposure-of-audio-and-video-elements-to-assistive-technologies/
http://www.marcozehe.de/2009/06/11/exposure-of-audio-and-video-elements-to-assistive-technologies/)
http://www.marcozehe.de/2009/06/11/exposure-of-audio-and-video-elements-to-assistive-technologies/
http://www.marcozehe.de/2009/06/11/exposure-of-audio-and-video-elements-to-assistive-technologies/)
http://en.flossmanuals.net/TheoraCookbook/Subtitles
http://en.flossmanuals.net/TheoraCookbook/EmbeddingSubtitles
http://en.flossmanuals.net/TheoraCookbook/EmbeddingSubtitles

Several demos have been made with out-of-band subtitles, captions, and audio descriptions and the HTML5
video tag:

Raul Rouget's subtitle demo using srt
(http://blog.mozbox.org/post/2009/03/10/video-tag-and-subtitles)

•

Jan Gerber's subtitle demo using srt (http://v2v.cc/~j/jquery.srt/)•
Philippe Le Hegaret's caption demo using DFXP (select HTML5)
(http://www.w3.org/2008/12/dfxp-testsuite/web-framework/START.html)

•

Silvia Pfeiffer's caption & audio description demo using srt
(http://blog.gingertech.net/2009/07/29/first-experiments-with-itext/)

•

These are all implemented using javascript, so you can learn from them. There is also a more detailed
introduction to Jan Gerber's javascript library (see section on Publishing) for subtitle support in this
Cookbook.

Silvia Pfeiffer's demo includes a proposal for how to associate out-of-band accessibility data through a new
HTML5 tag with videos. This specification is continuing to evolve and is expected to eventually lead to native
browser support of time-aligned accessibility data. A similar proposal has been made by Greg Millam from
Google (http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2009-February/018600.html). Such a
specification may look as follows:

<video src="elephant.ogv" poster="elephant.png" controls>
 <itext lang="fr" type="text/srt" src="elephant.fr.srt" category="SUB"></itext>
 <itext lang="en" type="text/srt" src="elephant.en.srt" category="CC"></itext>
 <itext lang="en" type="text/srt" src="audiodesc.srt" category="TAD"></itext>
</video>

Note: this is an example proposal only, which is not currently supported natively by any browsers.

Publishing accessible video on the Web 58

http://blog.mozbox.org/post/2009/03/10/video-tag-and-subtitles
http://blog.mozbox.org/post/2009/03/10/video-tag-and-subtitles
http://v2v.cc/~j/jquery.srt/
http://www.w3.org/2008/12/dfxp-testsuite/web-framework/START.html
http://www.w3.org/2008/12/dfxp-testsuite/web-framework/START.html
http://blog.gingertech.net/2009/07/29/first-experiments-with-itext/
http://blog.gingertech.net/2009/07/29/first-experiments-with-itext/
http://en.flossmanuals.net/TheoraCookbook/Publishing
http://en.flossmanuals.net/TheoraCookbook/Publishing
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2009-February/018600.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2009-February/018600.html

What is streaming?
Streaming Media is the term used to describe the real-time delivery of audio and video over the internet.
Streaming Media allows for live transmission of audio or video over the internet, transforming the internet
into a broadcasting medium.

The main difference between a streaming service and an online delivery (or archive) service is that streamed
data do not specify a start nor an end. A stream is a continous flow of video or audio data to which a viewer or
listener can just connect. So a stream will continue even if no one is connected to that stream.

Varieties of Streaming Services

There are two types of delivery of audio and video data over the internet: Playlist Streaming and Live
Streaming.

Playlist Streaming

The delivery of a stream of pre-recorded media files without any interaction over the internet
can be called playlist streaming. This type of stream is build upon a list of files that should be
streamed. Many players are able to stream files or list of files (e.g. VLC). Even if the files are
acquired from an archive, this is a kind of streaming, as the audience does not read the
complete file, but joins a stream. This delivery usually occurs using the http protocol.

Live Streaming

The delivery of live audio and/or video over the internet. This allows the user to experience
an event as it occurs in realtime. There are many examples of this, such as online radio or
viewing live performances. Only True Streaming supports live streaming.

This manual will mainly deal with True Streaming of both live and archived content.

Delivery

Providing video files (especially theora videos) is nearly as easy as providing pictures on a webpage. All that
is needed for such a scenario is a web server. This is often the cheapest way to deliver content on a small
scale. This method cannot be used for live streaming and does not enable advanced features such as multiple
bitrate encoding. However, the streamed delivery of archived videos (such as archive.org or youtube)
generates most webtraffic nowadays.

To enable live streaming, and to gain full functionality and efficiency, a streaming media server is required.
This server is usually standard server hardware but with the necessary streaming server software installed. It is
quite normal to install a streaming server on the same machine as an existing web server.

Streaming Servers

Perhaps a good way to understand how streaming works is to imagine a radio station.

A radio station is comprised of three components - a studio, a transmitter, and your audience's receivers.

What is streaming? 59

The basic diagram above shows how a transmitting radio station works. The radio studio is the source of the
audio. In this space there are usually mixing desks, cd-players, minidisc players, turntables etc. From the
studio an audio signal is sent to the transmitter. This can be sent from the studio to the transmitter by either a
cable (sometimes called a "landline") or by a microwave link. Then the transmitter sends the audio via FM so
that radio receivers (tuners) can pick it up and play it.

Radio works this way because it is trying to distribute the studio audio to as many people as possible. If you
imagine the radio studio without the transmitter then the station would have a somewhat reduced audience!
Essentially only those people who could get there (and fit into the studio!) would be able to listen. So the
transmitter works as a distributor, allowing more people to connect via their radio receivers and hence enlarge
the potential audience.

This is a close analogy to why streaming exists and how it works. If you are just playing
audio on a computer in your room then the audience isn't going to be so big... so, we utilise
streaming to distribute this audio to more people.

The analogy is obvious: the computer replaces the radio studio, the streaming server replaces
the transmitter, and your listeners connect to the server using computers, just like radio
receivers to the broadcast signal. The analogy can be taken quite a long way. Having a bigger
radio transmitter is like having more bandwidth available at the streaming server - both allow
more people to connect.

Streaming Servers 60

Icecast

In the world of online audio and video there is a group of technologies and techniques refered to as
streaming. Streaming, at its simplest, is the delivery of audio and video over the internet in realtime.
Traditionally streaming has been used for delivering live internet radio, or for broadcasting events over the
internet so you can watch them at home.

Streaming is often talked about using terms from the broadcasting industry as live internet audio and video are
often seen as being analogous to broadcast television and radio. Hence you might talk about 'internet radio' to
refer to live online audio. Sometimes people refer to sending live audio or video using streaming as
'broadcasting on the net' or as a 'internet broadcast'. These terms are helpful for helping us understand the
intended purpose of streaming but don't take them too literally. However it is useful to refer to these models
when explaining the role of Icecast.

With broadcast television or radio there is transmitter that distributes the signal sent from the studio, to your
television or radio.

With internet broadcasting (streaming) you replace the transmitter with a streaming server, which is really a
kind of software.

Icecast is this kind of software. It enables you to distribute live audio and video across the internet in realtime.
Note that this is only part of the equation. You also need a stream encoder that can send the original audio or

 Icecast 61

video stream to Icecast. Icecast distributes the stream, it does not create the stream - that's the job of the
encoder.

Icecast is a very mature technology and very robust. It supports the delivery of many different formats of
streaming audio (including MP3 and Ogg Vorbis) and it supports the delivery of Ogg Theora for streaming
video. Icecast runs on Linux and Windows. If you wish to install it on Linux you will need to have some
experience with Linux; specifically you will need to know a bit about how to install software from the
command line, and be comfortable editing text based configuration files. The Windows installation process is
a little bit more straight forward but you still need to be comfortable editing text based configuration files.

Installing and running Icecast is not recommended for inexperienced users.

 Icecast 62

TSS
TSS (Theora Streaming Studio) is an excellent encoder for sending Ogg Theora streams to an Icecast
server. There is a home page for TSS that is worth reading for an overview of what it does and there are also
installers available :

http://gollum.artefacte.org/tss/

TSS is a GUI (graphic user interface) encoder, which means you don't have to do anything tricky on the
command line. TSS can send out one or two streams with different settings, from the same video source. The
video source can be digital video (DV) or analog video via a video capture device such as a webcam, USB
video-in or video card with video-in. Bear in mind that a fast computer with at least 2gig ram will be required
to stream to 2 targets without frame drops or loss of audio synchronisation.

TSS can also display a preview of the outgoing stream, and can simultaneously archive the streams to disk
(but that depends a little on how good your computer is).

TSS actually manages the command line softwares :

dvgrab - grabs the video from a live video source such as a camera1.
ffmpeg2theora - converts video files to Ogg Theora2.
oggfwd - sends the video to a streaming server3.

TSS simply takes the configuration you set in the GUI and creates the appropriate command line using these
three softwares so you don't need to enter in complex commands manually.

One can always copy the command line being used by TSS, it will be printed out on the status window, the
small black space we can see above under the Execute and Stop buttons. Simply scroll your mouse pointer
and select the text. You could then run this piped commands directly from command line, saving some
resources by avoiding launch of the graphical system.

TSS 63

http://gollum.artefacte.org/tss/

TSS main developer is Lluis GÃ³mez i BigordÃ , the current release (February 2009) is 0.2. The project status
is active (always good to know!).

Installing TSS

TSS can only be installed on GNU/Linux. We will look at installing TSS on Ubuntu.

First visit the TSS download page :

http://gollum.artefacte.org/tss/#download

Here you will see a section with two links. One link is marked 'Debian / Ubuntu package'. We wish to install
this version. Click on this link using FireFox and you will see a window appear like this :

The option selected by default is what we want to use. If we open the installer with GDebi Package Installer,
then the installer will download and install automatically...sounds easy! So lets do this. Simply click 'OK' and
it will install.

Installing on 64 bit

When installing TSS you might see an error like this :

Installing TSS 64

http://gollum.artefacte.org/tss/#download

This means you are trying to install the software on a computer with a different 'architecture' than allowed by
the software. Actually you can bypass this but you have to do it on the command line. First, instead of using
GDebi you need to download the sources (.tar.gz file). Then from the same directory as where the installer is
located you need to type this on the command line :

 sudo apt-get install dvgrab ffmpeg ffmpeg2theora libtheora-bin oggfwd libvte-dev

The above command might take a while as there is a lot to download and install. When the process is
complete follow this with these commands :

tar zxvf tss-0.2.tar.gz

cd tss-0.2

./autogen.sh

Note : the name of the file to be installed will probably be different from that listed above.

Next execute the following commands :

 make

sudo make install

Now try typing 'TSS' on the command line, if it doesn't work then try this :

sudo cp src/tss /usr/bin/

The try starting TSS again from the command line :

Installing on 64 bit 65

Using TSS

There are two main panels in TSS that you have to verify have the right settings in order to send a stream : the
source and target tabs :

On the source tab one can choose the type of video input. When operating on a minimal setup there is a
option to use a webcam via video for GNU/Linux (v4l). You can also choose a DV input - this is useful for
streaming live video from a hand held video camera.

Using TSS 66

TSS also offers the possibility to stream an existing (archived) video file from your computer to an Icecast
server.

The second tab is called target1, here we will define the stream settings for our main stream. Below is an
example :

All fields in the ffmpeg2theroa encoding settings section must be completed.

It is important we keep in mind that any information we enter here will have a direct influence on the final
output bitrate of our stream. You cannot simply nominate an outgoing bitrate, rather the outgoing bitrate is
based upon the choices you make about frame size, audio quality etc.

Also, remember that the higher this bitrate is - the more bandwidth will be required to send it to the Icecast
server, and the higher the bitrate the higher the bandwidth requirements of the audience connecting to your
stream. So if some of our viewers are in Colombia where the average network connection is still around the
128kbps (kb/s or kbit/s is a unit of data transfer rate equal to 1,000 bits per second). This will mean that even
though we have broadband connection sufficient to allow us to send a stream at a high resolution and high
quality compression rate, we need to be careful to send a stream at a bitrate less than 128kpbs, otherwise few
people in Colombia would be able to see it.

The following categories relate to the options in the TSS encoding setting for both target1 and target2 :

Frame size: here we define the dimensions in pixels of the video stream. 320 by 240 has become a standard.
For low bandwidth settings one might opt for 240 by 180.

Frame rate: This setting defines the number of frames per second we want to transmit. Different events will
require different frame rates. In the case of a conference, where the subjects don't move or change position too
much, a 12fps (fps = frames per second) setting could be appropriate. In the example above we decided to
sacrifice on the frame rate in favor for a bigger frame size. We selected 25:3 that will be around 8fps.

Video Quality: This setting takes values in the range of 0 to 10. The default encoding quality for video of
ffmpeg2theora is 5, one should use higher values for better quality.

Using TSS 67

Audio Quality: This setting takes values in the range of -2 to 10. The encoding quality for audio defaults to:
1. Use higher values for better quality.

Audio Channels: Sets the number of output audio channels. The choices are 0 (no sound), 1 (mono) or 2
(stereo).

Audio samplerate: Expressed in Hz (Hertz) this box sets the output sample rate of the audio.

Below the boxes dealing with the technical specifications of the outgoing stream is where you enter
information that you want the audience to know :

The information in the ffmpeg2theora metadata boxes is potentially available to your audience. Whether
they can see the information depends on how they are viewing the stream (what player/browser) and if they
know how to access this information. You can enter any information here, it doesn't matter - ignore the
categories (location, date etc) if you want to.

The icecast server settings and icecast metadata entry boxes are next.

In the icecast server settings we have to define the address (URL) of the streaming server, the port this
server is using (usually 8000), the name of our mountpoint (channel), and the password. If you lack access
to an icecast server there are few free projects out there dedicated to assisting people to stream using free
software, check on estudiolivre.org or GISS.tv to name a few.

The icecast metadata settings is simply where you put information about your stream that you want the
audience to know. This information will be displayed on the servers webpage (each Icecast server installation
has its own webpage). Although they have specific titles you can put any information in here, it doesn't
matter.

The last tab has the title preview.

Using TSS 68

If you check enable preview window you will see a preview of the live stream as you encode it. This video is
not the same as the video coming from the Icecast Server, so it always pays to monitor both the preview and
the stream coming from the server (monitor the incoming stream on another computer).

If you wish to send one stream you need only pay attention to the settings in the Source and target1 tabs. If
you wish to send two streams you have to pay attention to the settings in target2 as well.

Once you have specified all the required information for each of the outgoing streams and have connected the
correct video source (or you have chosen a working video file to stream) then you just press 'Execute' and the
streaming should begin!

Using TSS 69

Streaming with ffmpeg2theora
This method focuses on streaming video from a DV or Firewire camera using GNU/Linux (e.g. Ubuntu). The
video stream will be Ogg Theora which means your users will be able to watch using Theora enabled player,
FireFox 3.5, or in a java applet such as Cortado. To follow this you need to know how to use the command
line and you need sudo access. If you have no idea what these things are, then you should consider reading a
good book introducing you to the command line.

Getting Ready

Please note : A Firewire camera is not the same as a DV camera. However for our purposes here they work in
the same way. Firewire is Apple's name for the interface standard known as IEEE 1394, other manufacturers
use other names such as i.Link (Sony) or Lynx (Texas Instruments) - but it doesn't matter, they are all IEEE
1394.

You will need the following:

DV cam•
GNU/Linux machine with firewire inputs•
firewire cable•
internet connection•
access to a 'theora-enabled' Icecast2 server (you need the IP address of the server, the port you
should use, and the password)

•

Set-Up

Lets start setting up the software you need. We will need to install the following applications:

dvgrab•
ffmpeg2theora•
oggfwd•

With Ubuntu you can run this command line:

sudo apt-get install dvgrab ffmpeg2theora oggfwd

The above command should all appear on one line. You will be asked for your password, type this in and the
installation process will begin. Now you have everything you need to get started. So first we need to plug the
dv (or firewire) camera in to the computer. You need to attach the firewire camera to the firewire socket on
the camera, and the other end of course goes into the firewire socket of your laptop or whatever computer you
are using.

Now, turn on the camera.

Next you need to enter the following command line, which provides the streaming server details you have for
the Icecast2 (theora-enabled) server. The command is:

sudo dvgrab --format raw - | ffmpeg2theora -a 0 -v 5 -f dv -x 320 -y 240 -o /dev/stdout - | oggfwd icecastserver 8000 pwd /theora.ogv

Remember the command will have to be all on one line (the above example is not). Also replace the details
below with the information you have about your Icecast server:

icecastserver•

 Streaming with ffmpeg2theora 70

8000•
pwd•

icecastserver should be replaced with the hostname or IP address of the streaming server. 8000 is the port
number and is probably the same. pwd should be replaced by the password of your server. Lastly, you can
replace /theora.ogv with your mount point, this depends on the configuration of your icecast server, but can
be anything as long as it starts with a forward slash (/) and ends in .ogg or .ogv.

Now, you should be streaming! To check the connection use VLC or Firefox 3.5

Set-Up 71

Streaming with VLC
VLC can stream theora files to an Icecast2 streaming server. This works with VLC 0.9.4 and above on
Ubuntu, and also on earlier versions of VLC on Windows (although the process is different for earlier
releases of VLC). It is possible to stream video files from your computer, a live webcam or hand held camera.
If you have a laptop with a camera built-in then you can also send live streams using this.

If you are using Ubuntu it is better to upgrade your version of Ubuntu to Intrepid (8.10) or Jaunty (9.04) as
they both come with a version of VLC which is easy to stream with. If you don't wish to upgrade the
Operating System then you need to install the latest version of VLC from source files - be warned, upgrading
VLC from sources is complex.

Streaming Server Requirements

We will examine streaming to an Icecast Server. You need access either to an Icecast Server or to someone
who can create an account for you and provide the access details. You need to know the following
information about the Icecast Server:

Hostname or IP Number of the Icecast Server•
Port (Default is 8000)•
Password •
Username (This may not be necessary depending on how Icecast is configured.)•
Mountpoint (This may not be necessary depending on how Icecast is configured.)•

Choosing Video File to Stream

Lets look at streaming using the camera built into a laptop. The process is very similar for streaming from an
external camera or archived video files.

The first thing you need to do is open VLC. Now from the Media menu choose Streaming... :

This will open a panel where you can choose the source for the video stream.

Streaming with VLC 72

We will choose the last tab - Capture Device, however here you could also choose any of the other tabs to
stream video from a disc (a DVD for example), archived files, or relay an incoming video stream. The
capture device window looks like this :

If all works well you might not need to change any settings in this section at all. Instead you just click on the
button titled Stream.

Choosing Video File to Stream 73

Stream Settings

Under the Outputs section of the stream settings there is a section for configuring Icecast.

You just need to check the box here and then fill in the details. There are a few things to remember here :

The Mountpoint should always start with a '/'.1.
The address does not start with 'http://'.2.
Most often you do not get a username for Icecast. In this case use the username 'source'.3.
The port is almost always 8000.4.
The format for the Login:pass field is exactly as the title suggests - the login followed by a ':' and
then the pass. All with no spaces. For example, a stream to a default install of Icecast2 (the default
passord is always 'letmein') would be :

source:letmein

5.

As you enter the information you will see the text change in the 'Generated stream output field' at the bottom
of the window.

If you were experienced you might be able to directly type this information in without using the fields
provided, but it's far easier to just to fill in the boxes as required.

Now all you have to do is press 'Stream' and the live stream will be sent to the Icecast2 server. However, VLC
does not provide good error feedback, so it might sit their looking like it's happily streaming whereas in fact
nothing is happening. VLC might even display 'Streaming' in the status bar, but this means nothing!

The only way to know it is actually working is to look at the status page on your Icecast server, or use a video
player to playback the stream live from the server.

Stream Settings 74

Saving a Theora Stream
If you are running GNU/Linux it is easy to rip an Ogg Theora stream. This is because Theora uses HTTP to
stream, hence you can use the wget software, which is usually included in linux distributions. You direct wget
to capture the stream like so:

wget http://streamingserver:8000/streamname

For example, if the server was icecast.streamingsuitcase.com and the stream name was theora.ogg, you
would use the following command for archiving:

wget http://icecast.streaminguitcase.com:8000/theora.ogg

This is good but if wget buffers, it will quit the archiving. However you can try this:

while true; do wget http://icecast.streaminguitcase.com:8000/theora.ogg;done

This can be run as a command on one line of a shell, or you can make it into a handy little script.

Another bonus from using wget to archive is that it will increment the file names. So if you archive the stream
in the example above the file would be saved as theora.ogg if you stopped wget and started it again the next
file would be called theora.ogg.1 etc. This means you don't overwrite the existing archive file.

Extracting parts of a video

For non live videos, it is sometimes possible to extract parts of the video as well. This only works if the
hosting provider has oggz-chop installed to allow server-side seeking. If it is installed you can specify an 'in'
and 'out' point. So if you just want to download the video from second 23 to second 42, you add ?t=23/42 at
the end of the URL:

wget http://example.org/theora.ogv?t=23.0/42.0

With Firefox 3.5 you can also open the URL in the browser and save it with right click Save Video As...

Saving a Theora Stream 75

Introduction
Ogg Theora is not only an excellent distribution format, but it can also be edited. If you have a GNU/Linux
machine with enough memory and computational power, you can explore editing software like LiVES
(http://lives.sourceforge.net), PiTiVi (http://www.pitivi.org/), Kdenlive (http://www.kdenlive.org/), and
Cinelerra (http://cinelerra.org/).

At this point in time, for simple editing of Theora files, PiTivi and LiVES are the best options. Kdenlive often
crashes when exporting to Theora (and the output file is incorrectly formatted), and Cinelerra is difficult both
to install and to use.

If you use Ubuntu then PiTiVi is an even better choice since installation is very simple. In addition PiTiVi is
built on the GStreamer multimedia framework (used by Ubuntu), so you can import and edit pretty much any
media file supported by GStreamer (which is a lot), and export to Theora.

LiVES and PiTiVi work like most editing software: they decompress the video files in the process of
importing the video data into the editing software, so you can view and browse through all the images and
sounds, rearrange them and do all kinds of cool stuff. When you finish, you re-compress the new edit by
exporting the resulting arrangement. This process of de- and re-compressing comes at a cost, as you lose a
little quality with each de- or recompressing process that you run. That's why you call this editing process
lossy editing.

 Introduction 76

http://lives.sourceforge.net
http://www.pitivi.org/
http://www.kdenlive.org/
http://cinelerra.org/

PiTiVi
PiTiVi is a video editor for GNU/Linux that supports importing and exporting Ogg Theora videos. Right now
it supports basic editing, cropping clips, arranging on a timeline and adjusting of audio levels.

PiTiVi has its own documentation that you might also wish to read located online at
http://www.pitivi.org/wiki/Manual#Proposed

There is also a very good manual available in PDF format that you can find online at
http://jeff.ecchi.ca/blog/?p=897

Installing

PiTiVi only works with GNU/Linux. If you have Ubuntu Jaunty (9.04) you can install a very useful version of
PiTiVi from the command line (terminal) with the command :

sudo apt-get install pitivi

You will be asked for your password, when you enter it the installation will proceed automatically.

When the installation is complete you can open PiTiVi from the Applications menu (listed under Sound &
Video).

You can also check http://pitivi.org/wiki/Downloads for instructions to install newer versions. PiTiVi is
actively developed right now and there are new releases coming out regularly.

Importing Video

Once you opened PiTiVi you can press the plus (+) button in the interface to Import clips.

PiTiVi 77

http://www.pitivi.org/wiki/Manual#Proposed
http://jeff.ecchi.ca/blog/?p=897%20
http://pitivi.org/wiki/Downloads

Imported clips are added to your Clip Library. You can use all formats that GStreamer accepts. If you don't
know what this means then the easiest way to know what files work with PiTiVi is to play them in Totem
(found in the Sound and Video Applications menu and titled 'Movie Player'). If a file can play in Movie
Player then it can also be used as a clip in PiTiVi.

You can continue adding as many clips as you like to the Clip Library (the video of the Digital Clock is
created by Riccardo Iaconelli).

Adding Clips

Once you imported the clips you want to use, you can drag them from the Clip Library on the timeline below.

If you add multiple clips to the time line they will appear as slightly different colors and with the filesnames
displayed :

Importing Video 78

If you can't see this kind of detail then use the zoom tools to zoom in and out of the time line :

Playback

When the clip is on the timeline you do not see the individual frames, but you can drag the slider backwards
and forwards in the player area to see the video.

When you play back video like this you can see the position (time) of the playback displayed by a red tracker
on the time line :

Adding Clips 79

Moving Clips

You can move the clips around by dragging them around the time line.

Cutting Clips

To cut a clip in two you need to click on the scissors icon :

Then move the cursor around the time line. You will see an orange line appear showing the potential position
of the cut :

When you have the orange line at the right place click on the timeline and the selected video file will be cut in
two at that point.

Deleting Clips

To delete a clip, click on it with the cursor so that it is selected and then press the Trash Can icon :

Playback 80

Export to Ogg Theora

Once your project is ready to be exported, you can click the Render Project button :

You will now see the Render settings window :

Click Choose File to and choose where to save the exported file to. You could also adjust the encoding
settings pressing Modify, once the settings fit your needs, press Render and get a coffee.

Export to Ogg Theora 81

Introduction
If you want to play around with your Ogg files you do not need to launch a full-blown editing software. A
number of useful tools exist that help you perform simple tasks with Ogg files on the command-line. The Ogg
Video Tools is a toolbox for Theora video files, that includes a number of handy command line tools for
creating an manipulating Theora files. Use them for cutting and splicing or to create thumbnails, preview or
slideshow videos without having to engage into a complex editing process.

Installing the Ogg Video Tools

Many GNU/Linux distributions provide the Ogg Video Tools within their repositories (e.g. Fedora,
openSuSE). If the tools are not available for your preferred distribution, or you want to upgrade to the most
recent version, continue reading the Installing from Source section below. This also applies to BSD and Mac
OS users.

Windows users can download a ZIP file, containing the executable command line tools from
http://sourceforge.net/projects/oggvideotools/files/.

Installing from Source

Visit http://sourceforge.net/projects/oggvideotools and click on Download Now to get a copy of the source
code.

Before continuing installation, make sure that you have all required development packages installed. The Ogg
Video Tools depend on the following other packages:

theora and theora-dev•
vorbis and vorbis-dev•
ogg and ogg-dev•
GD-lib with its development parts•
SDL and SDL-dev (in case you want to compile oggScroll)•

The Ogg Video Tools will successfully compile even with all of these libraries missing, but in that case only a
subset (the editing tools) are going to be compiled. The other tools will not be available at all after installation.

After making sure that the required packages are present, open a terminal and enter the following command
(without the initial dollar sign):

$ tar xzvf oggvideotools*.tar.gz
$ cd oggvideotools*
$./configure
$ make
$ su
<type root password>
$ make install

Where the ./configure command on the third line should output something similar to:

[...]
checking for bzero... yes
checking for memset... yes
configure: creating ./config.status

Introduction 82

http://sourceforge.net/projects/oggvideotools/files/
http://sourceforge.net/projects/oggvideotools%20

Creating the following tools:

oggJoin
oggSplit
oggCut
oggCat
oggDump

oggSlideshow
oggThumb
oggResize
oggSilence

oggScroll

83

Create Thumbnails
The Ogg Video Tools (http://sourceforge.net/projects/oggvideotools) come with a tool called oggThumb that
extracts thumbnails from Theora video files.

Example command:

$ oggThumb -t1,2,3,4 -s320x240 my_theora_video.ogv

Here we create four thumbnails from a video file called "my_theora_video.ogv", taken at 1, 2, 3 and 4 seconds
into the video. In this example the thumbnail images are stored with the following file names:

my_theora_video_0.jpg
my_theora_video_1.jpg
my_theora_video_2.jpg
my_theora_video_3.jpg

Creating a Series of Thumbnails

If you need to extract thumbnails at fixed intervals throughout the full video, without knowing the length of
the video in advance, use the following shell script to do the job:

#!/bin/sh
length=$(oggLength "$1")
timestring="0"
div=$(($2*1000))
for((i=1; i<$2; i++)) do
 value=$(echo "scale=3; $i*$length/$div" | bc -q 2>/dev/null)
 timestring="$timestring,$value"
done
oggThumb "$3" -t$timestring "$1"

The script is then called as:

 $./mkThumb my_theora_video.ogv 15

This script invocation extracts 15 pictures from start to end of the video file, at equidistant intervals. The
pictures are output as files, using the same naming convention as previously described. Replace
my_theora_video.ogv with the name of the video you want to work on. The number of thumbnails to generate
is given by the last argument. Change it to suit your needs.

Creating Thumbnails with Fixed Height or Fixed Width

You can request thumbnails of a certain size by adding option -s to the command line:

$ oggThumb -t1,2,3,4 -s320x240 my_theora_video.ogv

Here we generate thumbnails sized 320x240. You can omit one either width or height, by setting it to 0:

$ oggThumb -t1,2,3,4 -s120x0 my_theora_video.ogv

Here the height of the video is set to match a width of 120. oggThumb computes the height so as to preserve
the aspect ratio of the video frames.

Create Thumbnails 84

http://sourceforge.net/projects/oggvideotools

Advanced Functionality

Use option -f instead of -t to select the thumbnail time positions by frame number instead of a number of
seconds. Another option worth mentioning is -o png which generates thumbnails as PNG images, which have
a higher quality than the JPG files generated by default.

The full documentation of the oggThumb command line utility can be accessed by typing:

$ man oggThumb

on the command line. Note that the windows version comes with a set of HTML files instead, containing a
manual that can be read in your web browser.

Advanced Functionality 85

Creating a Slideshow
The Ogg Video Tools provide a command line tool called oggSlideshow to create slideshows from a series of
pictures in JEPG or PNG format with different effects for the changeover and presentation.

Synopsis: oggSlideshow [Options] picture1 picture2 picture3

Each picture is read in from the file system and resized as neccessary to match the video frame size, which
can be given by the -s option. If a picture's aspect ratio does not match the video frame, black borders are
added.

The following effects for the picture changeover are supported:

plain: Pictures are presented one after another.

crossfade: The first image fades out while the next one gradually appears. The crossfade duration is 1
second.

blurring: The picture is blurred before it disappears.The next picture appears blurred, then comes into
focus.

Another special effect is the Ken Burns effect, named after the famous documentary film maker. This
effect slides and zooms through the picture during presentation. The changeover in this effect is set to
crossfade. â��â��

There exist options to set bit-rate, the length of the per-picture presentation time, output file name and
more, summarized below:

Command Line Options

-s

Set the size of the video frame. The size is given as <width>x<height>. The default
size is 480x320.

Example: -s 320x240

-f

Set the frame rate of the video, given as the number of frames per second. The default
frame rate is 24 frames per second.

Example: -f 16

-o

Set the output file name of the created video. The default name is slideshow.ogv.

Example: -o myShow.ogv

-l

Creating a Slideshow 86

Set the presentation time (length) per picture. If your have 10 pictures and specify a
length of 10 seconds, the overall video length will be 1:40 (i.e. 100 seconds).

Example: -l 10

-d

Set the datarate measured used for the video, measured as bit per seconds. This is
intended more as an upper threshold. The resulting Theora file may be smaller than
expected.

Example: -d 1024000

-t

Set the picture changeover effect type, as described above. Supported types are:

kb: Ken Burns effect (default)◊
cf: picture crossfade for changeover◊
p: plain picture presentation◊
b: blurring as changeover◊

Example: -t p

-e

Enable reframing. In case a picture does not match the aspect ratio of the video
frame, it can be "reframed" by adding black borders. This option is only useful with
the Ken Burns effect (option -t kb). With the other changeover effects, pictures are
automatically reframed even without option -e.

Example: -t kb -e

Adding Sound to a Slideshow

Using oggSlideshow you can create silent video files only. But adding audio afterwards is merely a
matter of using a few more tools.

Let us assume you created a slideshow using all images from your directory somePics, as shown in
the following example command line:

$ oggSlideshow -s 320x240 -f 24 -o slideshow.ogv -d 512000 somePics/*.jpg

Before adding audio, we first need to create an audio track that has the same length as the slide show.
The slideshow duration is printed at the end of the slideshow creation process. Alternatively it can be
read out using the following command:

$ oggLength slideshow.ogv

This returns the length of the video in milliseconds. Using that information we can cut an Ogg/Vorbis
audio stream to the same length. 5.6 seconds in this example::

$ oggCut -l 5600 myAudioTrack.ogg myAudioTrackAdjusted.ogg

To multiplex both streams to one media file (newSlideshow.ogm), we use oggJoin:

Command Line Options 87

$ oggJoin newSlideshow.ogv myAudioTrackAdjusted.ogg slideshow.ogv

Now you are done!

Adding a Fixed Starting Picture

The first picture in a slideshow often needs to be a title picture giving some details about the
slideshow. Create a short and plain slideshow to use as title sequence, using only one picture:

$ oggSlideshow -s 320x240 -f 24 -tp -o startPicture.ogv -l 10 -d 512000 \ startPicture.jpg

Here the slideshow type is set to plain (-tp), making the picture just appear as it is. The duration is set
to 10 seconds (in contrast to the default settingn of 8 seconds).

We prepend the title picture to our slideshow.ogv using oggCat:

$ oggCat overallSlideshow.ogv startPicture.ogv slideshow.ogv

Of course we can also add an audio track as described above:

oggJoin newSlideshow.ogv myAudioTrackAdjusted.ogg overallSlideshow.ogv

A Script for Everything

The following shell script creates combines everything described in this chapter, creating a slideshow
with title sequence and audio.

#!/bin/sh
#
usage: ./mkSlideshow ~/mypicDir/ audiofile.oga outputFile.ogm
#
Variables to be changed
#
video frame size
SIZE="640x360"
#
data rate of the outgoing slideshow stream in bit/s
DATARATE="1024000"
#
presentation time of one picture in seconds
PR_TIME="10"
#
frame rate in pictures/s
FRAMERATE="24"
#
reframe picture
This adds black borders to picture to meet the aspect ratio
of the video frame size specified earlier.
With the Ken Burns effect, this is not strictly necessary,
but the sliding may be smoother
#REFRAME="-e"
REFRAME=""
#
resample
This option says, how the picture should be loaded (by gdlib)
As the resize mechanism of gdlib is really good, it is used to
bring it do a value "near" the video frame size (usually a bit
bigger). You usually do not see a big difference, if you change
this value :-), so keep it as it is (default = 1.2)
RESAMPLE="1.2"

Adding Sound to a Slideshow 88

#
slideshow type
kb - Ken Burns Effect (sliding and zooming)
p - plain (picture display only, no crossfade between pictures)
cf - crossfade (picture display, crossfading between pictures)
TYPE="kb"
#
#
Temporal file name
TMP_VIDEOFILE="slideshow_tmp.ogv"
TMP_AUDIOFILE="audio_tmp.oga"

creating the slideshow
oggSlideshow -s $SIZE -d $DATARATE -l $PR_TIME -f $FRAMERATE \
 $REFRAME -r $RESAMPLE -t $TYPE -o $TMP_VIDEOFILE $1/*.jpg

what is the length of this
LENGTHVIDEO=`oggLength $TMP_VIDEOFILE`

#
cut the audio file
LENGTHAUDIO=`oggLength $2`

#
is the audio file to short?
if [$LENGTHVIDEO -gt $LENGTHAUDIO]
then
 echo "warning slideshow ($LENGTHVIDEO) is longer than your audio file ($LENGTHAUDIO)"
 exit -1
fi

cutting the audiofile
oggCut -l$LENGTHVIDEO -i$2 -o$TMP_AUDIOFILE

#
Join audio and video file
oggJoin $3 $TMP_VIDEOFILE $TMP_AUDIOFILE

#
remove old files
rm -f $TMP_VIDEOFILE $TMP_AUDIOFILE

A Script for Everything 89

Creating a Video Preview
Hosting online video, it is often preferable to embed a short preview clip of a film into the main webpage,
which is linked it to the original video. Use the command line tool oggResize from the Ogg Video Tools
(http://sourceforge.net/projects/oggvideotools) to create such a preview.

A typical command line calling oggResize looks as follows:

$ oggResize -s256x144 -d64000 -f1 -p24 bigBuckBunny.ogv bigbuckbunnyPreview.ogv

Here we create the Theora video file bigbuckbunnyPreview.ogv from the original file bigBuckBunny.ogv
scaled to a small frame size of 256x144 pixels.

The -p option makes oggResize include only every 24th picture from the original, reducing duration to 1/24 of
the original length, usually creating a fast-forward version of the video. Since it does not make much sense to
fast-forward the audio stream of the video, audio is removed.

But here we also added option -f1 thereby adjusting the frame rate of the created video to one frame per
second. This prevents the video from being fast-forwarded, and is much easier to watch, looking similar to an
animated GIF image.

Adding a Play Button

First we need a PNG picture of the button, with a transparency mask that allows us to overlay it over our
video content. The transparency mask is called an alpha channel, nowadays most image editing programs
allow you to create one. Try for example the free software image editor GIMP.

With the -A and -a options you overlay a picture over the output video before and after the video is rescaled
respectively, to the size given by -s.

$ oggResize -s256x144 -d64000 -f1 -p24 -A Play-256x144.png bigBuckBunny.ogv \ bigbuckbunnyPreview.ogv

So that's it! Now you got a nice preview of the bigBuckBunny.ogv video, with a play button on top inviting
users to click on.

Creating a Video Preview 90

http://sourceforge.net/projects/oggvideotools

Introduction
The command line is a text-based method of calling utility programs and others in a shell command
interpreter session in a terminal program. Most GNU/Linux systems have a program called Terminal on the
main application menu. In most cases, it offers the user the Bourne-Again Shell, 'bash', a successor to the
original Bourne shell, 'sh', but there are several others in use.

Every user should know how to use simple text commands such as 'df -h', which says to get a 'disk fullness'
report in 'human'-readable units (MB rather than disk sectors). The basic features and many of the
intermediate concepts of the command line are documented in the Floss Manuals book Introduction to the
Gnu/Linux Command Line, available at no charge at http://en.flossmanuals.net/gnulinux. Readers of that book
who try out the examples given will be well prepared for anything described in this chapter. That is, they will
have passed the beginner stage, and be ready to enter the threshold of the advanced user stage. Advanced
command line use in GNU/Linux basically means two things: using the full range of options available in a
command (as listed by the man command--try 'man man'), and writing scripts of more than a few lines using
more than just simple commands.

Many video editing tools come in both a command line version and a full-screen text or GUI version that
accepts a set of selections from the user, and composes a command line to execute. For example, installing
packages from the command line in Debian, Ubuntu, and related GNU/Linux distributions uses the apt-get
utility. (In Red Hat, use yum.) The full-screen text package installer in these systems is aptitude, and the GUI
installer is synaptic. A well-written GUI tool can make it much easier to create, save, and reuse command
options than selecting commands in text, or can help in navigating large file systems or databases. On the
other hand, many GUI tools do not give control of all command options, so that more advanced use requires
the command line, or alternatively saving complex commands in text files, and making them into executable
script files with the chmod command.

Lossless Video Editing

Video editing is a very expensive venture in terms of your computer's computational power and memory
consumption. This is because complex video editing tools must enable you to work with every frame of a
video and every sample of an audio stream.

However, handling every single frame is not always necessary. In some cases, people only want to extract the
video or the audio stream from a file, or merge ('multiplex') a file from video and audio streams, or they don't
care about frame-accurate video cutting.

In these cases the video and audio streams don't need to be re-encoded and this makes the handling of video
less costly in terms of your computer's resources. It also means the editing tools are very fast.

This editing process is called lossless, as there is no re-encoding involved. Re-encoding video always causes a
loss in quality and editing video without re-encoding is therefore lossless. The encoded packets (chunks of
data), either video or audio, are not touched. They are kept as they are, so they are decoded with the same
quality they had before the editing process.

Tools

There are two main tool boxes for lossless video editing: The Ogg Video Tools and the Oggz Tools. They are
both collections of command line tools. Ogg Video Tools and Oggz Tools works on GNU/Linux, OSX, and
Windows.

Oggz can be found here: http://www.xiph.org/oggz/

 Introduction 91

http://en.flossmanuals.net/gnulinux.
http://www.xiph.org/oggz/

Ogg Tools can be found here : http://sourceforge.net/projects/oggvideotools

In some cases the two tool sets overlap in their functionality. Oggz Tools is a bit more focused on developers,
while the Ogg Video Tools is more focused on end users. Ogg Video Tools provides a lot more tools for
creating and handling ogg video files, while Oggz Tools provides a number of other tools, especially for
analysing ogg files.

Ogg Video Tools can handle video streams created by the Theora encoder and audio streams created by the
Vorbis encoder. Oggz can handle additional stream formats, like FLAC, Speex, CELT etc.

Ogg Video Tools command line tools include:

oggSplit: demultiplexes a multiplexed ogg file into several files with one stream in each.•
oggJoin: multiplexes Ogg audio (vorbis) and Ogg video (theora) files into a single Ogg file.•
oggCut: creates a new Ogg file as a subpart of an original input Ogg file.•
oggCat: concatenates two or more Ogg files.•
oggResize: changes Theora and/or Vorbis streams in multiple ways. •
oggDump: prints a dump of packets or pages within a given Ogg file.•
oggLength: returns the length of a given Ogg file.•
oggSilence: creates a vorbis audio file of a given length and filled with silence.•

Oggz Tools command line tools include:

oggz-chop: extracts part of an Ogg file between given start and/or end times.•
oggz-merge: merges ogg files together, interleaving pages in order of presentation time.•
oggz-sort: sorts the pages of an Ogg file in order of presentation time.•
oggz-rip: extracts one or more logical bitstreams from an Ogg file.•
oggz-info: displays info on the codecs used by an Ogg file.•
oggz-comment: lists or edits comments within the Ogg stream headers.•
oggz-validate: checks an Ogg file for common problems.•
oggz-dump: prints a dump of the packet streams within a given Ogg file.•

Tools 92

http://oggvideotools.sourceforge.net

A Bit of Theory
Editing Theora videos using command line tools like Oggz Tools and Ogg Video Tools does not require
knowledge about the intricate details of how Theora works. However, as these command line tools process
Theora files at a very low level, some side effects are going to show up that can not be explained without
going into some of the details of the Theora format.

If you think you can live with minor inaccuracies caused by editing, feel free to skip reading this chapter.

Anatomy of a Theora Video

A video file normally consists of a video stream and an audio stream. To store both streams into one file, a
so-called container format is used. The container used with Theora video is the Ogg container, holding a
Theora video stream and one or more Vorbis audio streams. Audio and video streams are stored interleaved.
That means that every stream is segmented into several blocks of data with nearly equal size. These blocks are
called pages.

Every page has a time stamp that gives information about where the page is placed within the stream.

Video and the audio streams are interleaved by concatenating the pages of both streams in ascending order of
their timestamps.

Demultiplexing

Technically, splitting a video file into its video and audio streams is easy. This is due to the fact that the two
streams can be separated by collecting the video and audio pages into different files. The process of splitting a
video file into its streams is called demultiplexing.

As all necessary information required for playback is contained within the streams, without the Ogg container
adding any further information, each of the split files itself constitutes a standard compliant Ogg contained
stream and can be read by any Theora/Vorbis aware video or audio player.

Page Timestamps

As mentioned earlier, streams are stored segmented into several pages. A page has a header that holds
so-called meta data describing this part of the video/audio stream. The header includes timing information, a
unique stream identification number, a page number and some other information.

According to the Ogg standard, timing information for every page is given by the granule position, a 64 bit
value contained in the header. How granule position relates to an actual time position like the number of
milliseconds from the start of the video is entirely defined by the stream, and not covered by the Ogg
container specification. For that reason a software handling Ogg files needs a granule position interpreter to
correctly handle the file. This interpreter needs to be aware of the codec and stream specific information to
produce timing information that can be compared across different streams.

While not defining how to interpret granule positions, the Ogg Standard specifies that all pages within an Ogg
file must be stored in ascending order of the corresponding time position. So any tool that cuts or concatenates
streams needs working granule position interpreters for every contained stream in order to correctly interleave
the pages.

A Bit of Theory 93

Encapsulating Codec Data

Pages are of nearly equal size by default (around 4096 Bytes). However, audio and video packets created by a
specific codec, usually do not fit exactly fit into a page. Audio packets are usually much smaller. Video
packets can be of a very different sizes, smaller or larger, depending on various factors.

Data that is produced by the video and audio codecs are firstly encapsulated into an Ogg packet. These
packets are then placed into the Ogg pages. A packet can either be split over multiple pages, or combined with
othe packets to fill up an otherwise underfull page, as required.

Encapsulating Theora Video Data

Theora video data created by the encoder consists of two types of Ogg packets: so called key frames (often
also called I-Frames), which are full pictures, and P-Frames, which carry only the differences between the last
and the current picture.

In order to display a given frame at a given time, the decoder must know the previous key frame and must
decode every frame (including the key frame) up to the actual time position of the given frame.

To be able to decode a video at all, the decoder needs information about the stream itself, such as the video
frame size. This information is placed into the header packets at the beginning of the stream.

Encapsulating Vorbis Audio Data

Vorbis audio data created by the encoder carries a certain number of audio samples. A sample is a unit of
audio data. The number of samples per Ogg packet is fixed and can only vary between two possible sizes,
defined in the stream header.

Similar to video data, audio data packets depend on each other. To decode one audio packet, the previous
packet is needed .

The audio decoder, depends on the stream parameters such as sample rate, bitrate etc, which are stored in
stream header packets at the stream's beginning.

Ogg Skeleton

As was stated before, a video stream can not start at arbitrary time position due to its nature of having key
frames (I-Frames) and delta frames (P-Frames). In addition audio is stored in packets, which have a given
timing granularity.

To ensure synchronization and a correct starting point, Ogg Skeleton pages carry information about the
starting position of a each stream. A decoder, that reads the Ogg Skeleton information, can then seek to the
correct audio and video position and start playing from this position.

Encapsulating Codec Data 94

Splitting a Video File
Splitting a video file into its constituent streams is often called demultiplexing. The command line tool
oggSplit from the Ogg Video Tools performs demultiplexing.

Synopsis: oggSplit originalFile.ogv

This command extracts all streams in originalFile.ogv into separate files. It uses the following naming scheme
for the created files:

<codecName>_<ID>.<extension>

The codecName is set to theora, vorbis or unknown, depending on the codec type of the stream in question.

Every stream has a specific Identification Number (ID), set by the encoder. This ID is a 32 Bit number that is
unique for every stream within a single Ogg file. As there can be more than one audio or video stream within
a file (e.g. different audio streams for different languages), this ID is needed to distinguish among them.

The extension is set to match the contents of the stream. ogv is used for video files, oga for audio files and
unknown streams get the extension ogg.

Example:

oggSplit myFile.ogv
ls
theora_a1bb23c1.ogv vorbis_a316522.oga

Splitting a Video File 95

Cutting an Ogg File
Cutting an Ogg file consisting of video and audio streams into sections by time, while preserving
synchronization between streams in the output files, is a bit tricky. Because there are several ways to do so,
this section gives you an idea of the possiblities and their advantages and drawbacks.

Tools to edit video files can be divided between lossless and lossy tools. Lossless tools only handle the ogg
stream (ogg pages and ogg packets). So the quality of the data is preserved. Lossy tools must first decode the
data to allow editing and then re-encode, thus losing quality. This type of editing provides greater flexibility
(e.g. it allows overlaying of images) at the expense of quality. Beyond that, the decoding and encoding
process requires much more time than just handling Ogg stream packets.

This chapter only deals with tools that losslessy cut video files.

Using oggCut

The command line tool oggCut is a tool that can cut Ogg files on a keyframe basis. Use it like:

oggCut -s <StartTime> -e <EndTime> originalFile.ogv createdFile.ogv

where <StarTime> and <EndTime> are given in milliseconds. Alternatively you can cut using a start time
and length using option -s:

oggCut -s <StartTime> -l <Length> originalFile.ogv createdFile.ogv

Here, too <Length> is measured in milliseconds.

When oggCut is executed, it searches for the first Ogg Theora packet with a timestamp greater than or equal
to the time given by the -s option. If this packet is found, the program seeks to the next keyframe and creates
the new file with that keyframe as the first frame.

When the program finds a packet with a timestamp greater than the end time, it closes the newly created file
and stops.

As the start time is likely not the position of a keyframe, the created file may be smaller than expected.

Video/Audio synchronization issues with oggCut

Because oggCut only operates only on packet boundaries, and because Vorbis and Theora stream packets are
not synchronous, the audio and video packets usually start at different time positions.

Therefore when oggCut creates a new file that starts at time t, the next audio packet will likely start at a
position t+x, where x is the time offset between the keyframe video and the next audio packet.

When these two streams are written to the new file, this time offset information is lost. Therefore the player
must assume that both files start at time 0. For that reason, the audio stream always plays a bit too early.
However, as an audio block is quite short, the difference is usually only a few milliseconds and is hardly
noticeable.

Using oggz-chop

The program oggz-chop from oggz-tools cuts Theora videos at any position requested. If neccessary it cuts at
non-keyframes or even in the middle of a frame's presentation time.

Cutting an Ogg File 96

Technically this kind of fine-granularity cutting is not possible with Theora video technology. It is achieved
by a trick: instead of really cutting the video at the requested position, it is cut at the closest point, making the
resulting video file longer than requested. Then a so-called Ogg Skeleton header is added to the video that
instructs the player to only play the actually requested range of the video.

The superfluous video frames that could not be cut from the video are still present, they will just be hidden on
playback.

The disadvantages of this approach are obvious: on the one hand, disk space is wasted by storing unnecessary
amounts of data, on the other hand, the newly cut file will only play back correctly in video players that
understand the Ogg Skeleton information. Another not so obvious disadvantage is that files that were created
this way can not be concatenated without the hidden part reappearing. This is due to the fact that the Ogg
Skeleton can only hide frames at the start and end of a video. Concatenating two videos of this kind, will leave
hidden frames in the middle -- something Ogg Skeleton does not support.

Now that you understand the implications of using oggz-chop, let's look at how it is used:

oggz-chop -s <StartTime> -e <EndTime> originalFile.ogv createdFile.ogv

Here <StartTime> and <EndTime> are specified as <Hour>:<Minute>:<Second>. <Second> can contain a
fractional part so you are free to specify time at any resolution.

We should mention another option: you can run oggz-chop with -k to force it to omit any Ogg Skeleton
information. This way granularity of the cutting process is limited to keyframes and you can be sure that the
generated file will play back correctly even in older players that do not support the Skeleton.

Using oggz-chop 97

Join Streams
Ogg Video Tools provides the command line tool oggJoin to interleave two or more streams into one Theora
video file. It is able to interpret the page granule position and interleave the streams in case they contain
Theora video or Vorbis audio.

This process is also called multiplexing.

Synopsis: oggJoin newFile.ogv stream1.ogv stream2.oga [stream3.oga [...]]

Note: The video stream (.ogv) must come first.

Although oggJoin allows arranging the streams in any possible order, the Theora standard demands that the
video stream be the first stream. Correctly stated: the Theora header must be the first header within a
multiplexed file, in order to allow players to differentiate between audio only and video files. This is achieved
by placing the video stream first stream in the list, as shown in the synopsis.

Join Streams 98

Ogg File Concatenation
To concatenate two or more Ogg files with audio and video streams into a single video file without
reencoding is easy, but can lead to the same synchronization problems as using oggCut.

The command line tool oggCat creates a new Ogg file from a number of other Ogg files.

Synopsis: oggCat outputFile.ogv inputfile1.ogv inputfile2.ogv [inputfile3.ogv [..]]

To create an Ogg file, the parameters for all streams must match. If one or more parameters in an input file do
not match, that file will be ignored, but the process of creating the output file will continue. The output file is
a valid ogg file. It is just not the ogg file desired.

The Process

oggCat reads in the first file mostly as it is. However, it does not handle any unkown streams and does not
integrate them into the output file.

To find a corresponding stream within the succeeding Ogg files, oggCat creates a parameter table with all
necessary information about the streams of the first file (inputfile1.ogv), so that the first file serves as a
"reference".

The streams in the following files (inputfile2.ogv inputfile3.ogv ...) are tested against the parameters of the
reference table, so they do not have to be in the same order as the reference file.

Example:

The first Ogg file consists of one theora and one vorbis stream. The theora stream video has a frame size of 320x240 pixel and the vorbis audio stream has a sample rate of 32 kHz.

The next file consists of three streams: two theora streams and one vorbis stream. oggCat can handle the concatenation as long as there is at least one theora stream available with matching parameters (320x240 pixel framesize) and the audio stream parameter matches, too. The second theora stream can have whatever parameters.

If there are no matching parameters in any of the streams, oggCat prints a line suggesting how the file might
be reencoded:

vorbis parameter compare: data rate not matching 32000 != 64000
You may try to reencode with the datarate of the other file

Please try to resample with the following command
oggResize -D 32000 <file see below>

Using cat

Another way to concatenate two videos is by adding one file after another with the command line tool cat.
This method triggers the player to setup a new decoding session for the next stream.

The Ogg Standard allows opening a stream after another stream has ended, but most players do not implement
this method of re-opening a decoder session. Therefore this method should always be tested with the players
that should be used after this session.

oggCat and oggz-chop

When a file has been created with oggz-chop, concatenation is not possible because of the way oggCat works.

Ogg File Concatenation 99

The reason is that files with a skeleton and different time offsets defined in this skeleton for every stream (as
is the case for most files created with oggz-chop) can not be concatenated to one continuous stream. This
behavior is caused by the fact that two ogg streams would overlap. The presented frames would overlap the
ones that are not presented, as they are only needed for the decoding of the first video frame. This is not
possibile in one Ogg stream.

Syncronizing issues with oggCat

Different streams in one Ogg file may not have the (exact) same length. During the concatenation process the
streams of the next Ogg file in the concatenation list are placed directly after the corresponding streams of the
starting file without any time gaps. Therefore synchronization of the second file will suffer from an inaccurate
stream ending of the first file.

oggCat and oggz-chop 100

OggResize
The command line tool oggResize can resize the height and width of an ogg file (ogg, oga or ogv) in various
ways. However, it does only handle Ogg Theora and Vorbis streams. The advantage of oggResize over other
tools is that it converts only the streams that need to be changed. Streams that need no conversion will not be
effected.

oggResize can change the video frame size, video or audio datarate and the video frame rate or audio
sample rate.

It can also add comments to any stream and can include PNG images with an alpha channel, which are
rendered into the video at any time period before or after the resizing process.

Synopsis: oggResize [options] inputfile.ogv outputfile.ogv

The available options are:

-s sets the size of the video frame. The size is given as <width>x<height>. The default size is 480x320.
By default the aspect ratio of the original video frame is kept as it is, so if the size of the new video frame
does not match in aspect ratio, oggResize adds black borders at the top and bottom or right and left, to fit the
new aspect ratio.
If you want to stretch the video frames to the new size, use the -t option.

Example: -s 320x240

-d sets the datarate in bits per second for the video encoder (theora). This is meant to be an upper threshold.
So the file may be smaller than assumed. If not set, the datarate of the original stream is used.

Example: -d 1024000

-D sets the datarate in bits per second for the audio encoder (vorbis). If not set, the datarate of the original
stream is used.

Example: -D 64000

-f sets the frame rate of the video with numerator and denominator and is the frames per second. If only one
number is given, the denominator is set to 1. If not set, the frame rate of the original video is used.

Example: -f 25:2

-F sets the sample frequency (sample rate) of the audio data in Hertz. If the sample frequency does not match
the original file, resampling is invoked.

Example: -F 32000

-t if this option is set, the picture will be stretched to the output size. In this case, the aspect ratio of the
output video may not match the original video frame aspect ratio. This option help omitting the black borders,
that appear if the aspect ratio of the original and the new video do not match.

Example: -t

-c adds comments to the video (theora) stream. Comments are in the form 'type=value'. More than one
comment can be concatenated with a semicolon. It is recommended that apostrophes (single quote) be used, as
the command line may use the semicolon as a separator.

OggResize 101

Example: -c 'AUTHOR=yorn;DATE=03.07.09'

-C adds comments to the audio (vorbis) stream. Comments are in the form 'type=value'. More than one
comment can be concatenated with a semicolon. It is recommended that apostrophes (single quote) be used, as
the command line may use the semicolon as a separator.

Example: -C 'AUTHOR=yorn;DATE=03.07.09'

-q specifies the quality for the resizing process. Values can be chosen between 1 (best quality, with slight
bluring) and 6 (worst quality). The default value is 2.

Example: -q1

-p creates a preview film. The number given with this option specifies the interval between the frames
selected, e.g. -p24 means that every 24th frame is selected/shown. Thus the newly created video plays 24
times faster. This option can be combined with the -f option to control the frame rate. With both options nice
video previews can be created. If -p is used, the audio stream is ignored.

Example: -p 24

-a adds a picture to the video frame before it is resized. The picture does not have to fit into the video frame.
It is always placed in the upper left corner of the video frame.

Expression: <picture1.png>[,<startTime>[,<endTime>[,s]]]

The default start time is 0. The default end time is -1. By default s is not set. In this case the picture does not
fade in. If s is set then the picture does fade in.

It is possible to superimpose more than one picture on a video frame. To concatenate the expressions use the
colon. If the timelines overlap, the pictures are superimposed on one another, so the last picture is the
foreground layer.

Example: -a etwas.png,2,7,s:etwasneues.png,5,10

-A adds a picture to the video frame after it is resized.

The syntax is the same expression as with -a option

Examples

Changing the video frame size and the datarate:

 oggResize -s320x240 -d512000 orig.ogv new.ogv

This command converts the video file orig.ogv to the new video file new.ogv. The frame size of the newly
created video is set to 320x240 pixels and the data rate is set to 512 kByte/s. If the parameters of the original
file fit the new parameters, the video stream is just copied, without changing the data. If the video frame size
is different, it is changed to the new size by some appropriate algorithms.

If there was an audio stream within the orig.ogv file, it is copied into the new file.

Changing the audio data rate, sample rate and numbers of channels:

oggResize -D64000 -F16000 -N1 orig.ogv new.ogv

Examples 102

This command line converts only the audio stream of file orig.ogv to a sample rate of 16kHz, a datarate of 64
kBytes/s and a mono channel. As with video, the audio stream is only reencoded, if the given parameters do
not match that ones in the vorbis audio stream. The video stream is copied as is.

This is a very fast method of reencoding only the audio stream, without any other procedures such as splitting
and rejoining the streams of an ogg file.

Changing the video frame size, the audio data rate, the video data rate and adding two pictures on top of the
video for a period of time:

oggResize -s300x200 -D32000 -d1024000 -A etwas.png,2,7,s:etwasneues.png,5,10 \ orig.ogv new.ogv

This command line converts the audio and video stream as described in the before mentioned examples.

Additionally it adds a picture in PNG format and an alpha channel etwas.png to the video from second 2 to
second 7 with a smooth fade in and fade out and the picture etwasneues.png is placed on top of the video
frame from second 5 to second 10 without any fading.

Examples 103

Analysing Ogg Files
There are a number of tools available to analyse ogg files from the packages Vorbis tools, oggz tools and
Ogg Video Tools. As with editing, the tools may overlapping in functionality, however here we will focus on
the usual usage of the available tools and the fields where they could be used.

The tools that are discussed here are :

From Vorbis tools:

ogginfo•

From oggz tools:

oggz-info•
oggz-comment•
oggz-validate•
oggz-sort•
oggz-dump•
oggz-sort•

From Ogg Video Tools:

oggDump•
oggLength•

Information about an Ogg file

If you want to get some information about what streams are available within a file and what nature these
streams have, you use ogginfo or oggz-info.

$ oggz-info big_buck_bunny_480p_stereo-small.ogv Content-Duration: 00:09:56.384 Theora: serialno
0000020573 9546 packets in 6797 pages, 1.4 packets/page, 1.037% Ogg overhead Video-Framerate: 16.000
fps Video-Width: 320 Video-Height: 240 Vorbis: serialno 0000003594 18641 packets in 576 pages, 32.4
packets/page, 1.412% Ogg overhead Audio-Samplerate: 16000 Hz Audio-Channels: 2

The printed output here is about which streams are available within the Ogg file and the parameters the
streams have (e.g. for theora the video frame size and the frame rate and for vorbis the sample rate and the
channel number).

ogginfo even prints out more detailed information, e.g. version information and all information available from
the video and audio header packets, e.g. aspect ratio or colour spaces.

oggz-info can tell you more about an Ogg file. In particular, the -a option will tell you even more detailed
information on your file. However, these information are mostly from the statistical area.

To read or edit the comments fields, that are delivered with every stream within the Ogg file. To do so, the
oggz tools provide the oggz-comment command line tool.

Example for printing the comments.

$ oggz-comment -l big_buck_bunny_480p_stereo-small.ogg
Theora: serialno 0000020573
 Vendor: Xiph.Org libTheora I 20081020 3 2 1

Analysing Ogg Files 104

 ENCODER: oggvideotools-0.8-win32
Vorbis: serialno 0000003594
 Vendor: Xiph.Org libVorbis I 20090514
 ENCODER: oggvideotools-0.8

To add a comment, your add a "Tag=Value" pair to the end of your command line.

$ oggz-comment big_buck_bunny_480p_stereo-small.ogg -o bigbuck_comment.ogv \ "LICENCE=Creative Commons CC-BY-SA"

$ oggz-comment -l bigbuck_comment.ogv
Theora: serialno 0000020573
 Vendor: Xiph.Org libTheora I 20081020 3 2 1
 ENCODER: oggvideotools-0.8-win32
 LICENCE: Creative Commons CC-BY-SA
Vorbis: serialno 0000003594
 Vendor: Xiph.Org libVorbis I 20090514
 ENCODER: oggVideoTools 0.8
 LICENCE: Creative Commons CC-BY-SA

Your can also add a comment only to one of the available streams or delete comments. Please refer to the help
page for these more advanced options.

Analysing an Ogg file in detail

Mainly for developers, it is often useful to have a look into the stream itself and to analyse if an Ogg file is
compliant with the Ogg Standard.

For validating a file you use the command line tool oggz-validate:

$ oggz-validate input.ogv
input.ogv: Error:
serialno 1101839243: Terminal header page has non-zero granulepos
serialno 1101839243: Terminal header page contains non-header segment

A rather common problem that oggz-validate might report, is badly sorted Ogg files. These will usually play,
but may cause issues such as intermittent stuttering, or increased memory usage. The oggz-sort tool may be
used to correct these sorting issues:

$ oggz-sort -o output.ogv input.ogv

A more detailed view can be given by the tools oggz-dump and oggDump. Both of these tools write detailed
output data to the console.

oggz-dump can output the packets of all or some specific streams within a given Ogg file.

$ oggz-dump myfile.ogv
[...]
 0b40: 6f13 abc9 f3ac 9dc2 cec5 9c62 0e70 1fab o..........b.p..
 0b50: f891 01a8 0633 430e 308a 6f8c 86c3 131a 3C.0.o.....
 0b60: 3ab6 840d edab e79f fe24 a4 :..$.

00:00:32.104: serialno 0938763527, calc. gpos 513664, packetno 1022: 269 bytes
 0000: 3eb7 e92b 50b4 0028 a93c 8bc4 0039 0948 >..+P..(.<...9 H
 0010: 1d58 0000 0080 5f03 db01 ee92 2482 48dd .X...._.....$.H.
 0020: d73f 2562 feeb de81 94fe 75fb b7ff decf .?%b......u.....
 0030: 18c0 b830 619f b6c5 cf0d 00f3 b5f5 bbbd ...0a....
[...]

With oggDump you can decide if you like to see the pages or the packet information of an Ogg file by setting
the -p (packet) or -g (page) option. Further more you can specify the detail level of the stream information

Information about an Ogg file 105

output by using -l (detail). The detail can be set from 1 (not detailed) to 5 (most details):

$ oggDump -l3 -g myVideo.ogv
[...]
Ogg Page: header length = 42 and body length = 3600
Header Information:
 Ogg Version : 0
 Serial No : 0x37f46507
 Packet Type : fresh packet
 Page Type : normal page
 Last Page : normal page
 Granule Position : 0(0x0)
 Page Number : 1
 Checksum : 0x5ced317c
 Table Segments : 15

Segments:
 67 ff ff ff ff ff ff ff ff ff ff ff ff ff b6

Header Hex dump:
 4f 67 67 53 00 00 00 00 00 00 00 00 00 00 07 65
 f4 37 01 00 00 00 7c 31

[...]

Tips and tricks

This subsection lists some useful ways to use several of the tools described above.

Getting the Duration of a Stream

To figure out the duration of a video file you can use oggz-info or ogginfo, but here you need to extract the
information via script from the output. oggLength gives you another way to receive the length directly, so
you can use it more easily.

Create an Ogg Vorbis file filled with silence that fits exactly to a video

$ oggSilence -l`oggLength videoFile.ogv` -o audioSilence.oga

Creating a sound byte from a portion of a video

These two commands save a short 5 second audio clip from 40 seconds into a video:

$ oggz-rip -c vorbis video.ogv -o temp.ogg
$ oggz-chop -s 40 -e 45 -o soundbyte.ogg temp.og

Adding an embedded text subtitles stream

You've written German subtitles for an English language video you found on the web ?

$ kateenc -t srt -l de -c SUB -o subtitles.ogg subtitles.srt
$ oggz-merge -o video-with-german-subtitles.ogv original-video.ogv subtitles.ogg

Getting a list of all packets in a stream in a very compressed way

$ oggz-dump video.ogv | grep packetno | less

Analysing an Ogg file in detail 106

00:00:00.437: serialno 0000020573, calc. gpos 0|7, packetno 10: 414 bytes 00:00:00.500: serialno
0000020573, calc. gpos 0|8, packetno 11: 692 bytes 00:00:00.562: serialno 0000020573, calc. gpos 0|9,
packetno 12: 600 bytes 00:00:00.625: serialno 0000020573, granulepos 0|10, packetno 13: 859 bytes
00:00:00.687: serialno 0000020573, calc. gpos 0|11, packetno 14: 700 bytes 00:00:00.750: serialno
0000020573, calc. gpos 0|12, packetno 15: 1.154 kB 00:00:00.812: serialno 0000020573, calc. gpos 0|13,
packetno 16: 878 bytes 00:00:00.875: serialno 0000020573, granulepos 0|14, packetno 17: 1.342 kB
00:00:00.000: serialno 0000003594, calc. gpos 0, packetno 3: 118 bytes 00:00:00.032: serialno 0000003594,
calc. gpos 512, packetno 4: 115 bytes 00:00:00.064: serialno 0000003594, calc. gpos 1024, packetno 5: 127
bytes

Getting a list of all packets in a stream in a very compressed way 107

Other Interesting Things
Here are some additional projects you might find interesting. You will need Firefox 3.5 to view most of these.

Video and SVG

http://www.double.co.nz/video_test/video.svg

Video and CSS Transforms

http://www.zachstronaut.com/lab/isocube.html
http://hacks.mozilla.org/2009/06/tristan-washing-machine/
http://hacks.mozilla.org/2009/07/video-more-than-just-a-tag/

Video and Subtitles

http://people.mozilla.com/~prouget/demos/srt/index2.xhtml
http://people.mozilla.com/~prouget/demos/DynamicContentInjection/play.xhtml
http://www.annodex.net/~silvia/itext/
http://www.annodex.net/~silvia/itext/elephant_no_skin.html

Replace background with image

http://people.mozilla.com/~prouget/demos/green/green.xhtml

Other Interesting Things 108

Glossary
absolute URL Link specifying the complete path to a file. Contrast with relative URL.

codec Short for 'coder-decoder'; a device or computer program capable of encoding and/or decoding a digital
data stream or analog signal.

compression A method for generating smaller files for transmission or storage, with the capability of
regenerating the original data exactly (lossless compression) or approximately (lossy compression).

container A file format that specifies how different streams of data or files (such as encoded audio and video)
can be stored or sent over a network together. Also called a wrapper. A particular container format can include
video data in many encodings. The .ogg format combines Ogg Vorbis audio and Ogg Theora video, plus
metadata. Matroska (.mkv), .mp4, and .avi containers can also contain Ogg Theora video.

decoder A device or computer program for converting a compressed or otherwise encoded file or data stream
back to the original format and either the exact original data (lossless compression), or some approximation of
it (lossy compression).

demultiplex Convert a file or stream containing multiple data streams to separate files or streams containing
one stream each.

distribution In GNU/Linux and BSD, a set of software selected, maintained, and distributed under Free
license by some organization or individual, including the operating system, essential utilities and data, and
applications. For example, Ubuntu Linux or FreeBSD.

encoder A device or computer program for converting a source file or data stream to another format, usually
compressed.

Firefogg Firefox add-on for encoding video in Ogg Theora while it is uploading to a Web site. Requires
specific software in the Web server.

GUI Graphical User Interface

H.264 A patent-encumbered codec used by Apple, Youtube, and others.

HTML5 Version 5 of Hyper Text Markup Language, which includes new functions for managing video.

jar file Java archive file containing software written in Java.

key frame In video compression, a frame that is described in full, usually at the start of a scene or cut.
Succeeding frames can be described by their differences from a preceding frame.

lossy In data compression and encoding, an irreversible algorithm that enables recovery of an approximate
copy of the original data. Some lossy algorithms permit the user to set the degree of accuracy in the encoding
step.

lossless In data compression and encoding, a reversible algorithm that enables recovery of a bit-perfect copy
of the original data.

metadata Information about the contents of a file, such as title, author, and so on.

NGO Non-Governmental Organization, usually but not always a non-profit corporation.

Glossary 109

patent, software A licensed monopoly on an idea or algorithm. The legality and desirability of software
patents are hotly debated, and a good deal of ingenuity is put into circumventing them.

relative URL Link to a file starting from the current location in the file system. Contrast with absolute URL.

split Demultiplex.

stream A continuous data transmission without a predefined size, as opposed to a file of some specific size.

streaming Real-time delivery of multimedia content, in contrast with downloading followed by playing.

torrent 1) Distributed download software such as BitTorrent, and its method of operation, in which pieces of
a file are assembled from multiple sites. Users who have downloaded a file, and have more upload bandwidth
than they need, offer to let others get part of the file from them. 2) Download software using a torrent client.
3) The tiny file that specifies how to torrent a much larger file.

transcode Change content from one encoding to another. When transcoding, best results are attained when
starting from the originals, as successive lossy encodings lose quality with each step.

wrapper A container.

Glossary 110

License
All chapters copyright of the authors (see below). Unless otherwise stated all chapters in this manual licensed
with GNU General Public License version 2

This documentation is free documentation; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation; if not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

License 111

Authors
ABOUT THIS MANUAL
© adam hyde 2009
Modifications:
David KÃ¼hling 2009
William Merriam 2009

ACCESSIBILITY
© TWikiGuest 2009
Modifications:
adam hyde 2009
Silvia Pfeiffer 2009

ANALYSING OGG
© Mark Hancock 2009
Modifications:
adam hyde 2009
Jan Gerber 2009
ogg k 2009
JÃ¶rn Seger 2009

STREAM RIPPING
© adam hyde 2007, 2009
Modifications:
Alan Toner 2009
Edward Cherlin 2009
Holmes Wilson 2009
Jan Gerber 2009
ogg k 2009
Thomas Middleton 2008
JÃ¶rn Seger 2009

CAT FILES
© adam hyde 2009
Modifications:
Robert Valliant 2009
JÃ¶rn Seger 2009

CODECS
© TWikiGuest 2008
Modifications:
adam hyde 2009
Holmes Wilson 2009
Jaap Hoetmer 2009
Jan Gerber 2009
ogg k 2009
Robert Valliant 2009
susanne lang 2009
JÃ¶rn Seger 2009

CONTAINERS
© TWikiGuest 2008

 Authors 112

Modifications:
adam hyde 2009
Holmes Wilson 2009
Jan Gerber 2009
ogg k 2009
susanne lang 2009
JÃ¶rn Seger 2009

DISTRIBUTION
© adam hyde 2007, 2009
Modifications:
Holmes Wilson 2009
ogg k 2009
susanne lang 2009
Thomas Middleton 2008

CREATE PREVIEW
© JÃ¶rn Seger 2009
Modifications:
adam hyde 2009
Alan Toner 2009
David KÃ¼hling 2009

CREATE SLIDESHOWS
© JÃ¶rn Seger 2009
Modifications:
adam hyde 2009
Alan Toner 2009
David KÃ¼hling 2009
Edward Cherlin 2009

CREATE THUMBNAILS
© JÃ¶rn Seger 2009
Modifications:
adam hyde 2009
Alan Toner 2009
David KÃ¼hling 2009
Mark Hancock 2009

CREDITS
© adam hyde 2006, 2007, 2009

CUT A FILE
© adam hyde 2009
Modifications:
David KÃ¼hling 2009
Edward Cherlin 2009
Robert Valliant 2009

INTRODUCTION
© adam hyde 2007, 2009
Modifications:
Alan Toner 2009

 Authors 113

Edward Cherlin 2009
Holmes Wilson 2009
Jan Gerber 2009
salsa man 2009
susanne lang 2009
Thomas Middleton 2008
JÃ¶rn Seger 2009

EMBEDDING SUBTITLES
© adam hyde 2009
Modifications:
Edward Cherlin 2009
Holmes Wilson 2009
Jan Gerber 2009
susanne lang 2009

INTRODUCTION
© TWikiGuest 2008
Modifications:
adam hyde 2009
David KÃ¼hling 2009
Jan Gerber 2009
jay maechtlen 2009
JÃ¶rn Seger 2009

FFMPEG2THEORA
© TWikiGuest 2008
Modifications:
adam hyde 2009
David KÃ¼hling 2009
Edward Cherlin 2009
Holmes Wilson 2009
Jan Gerber 2009
ogg k 2009
JÃ¶rn Seger 2009

FFMPEG2THEORA
© adam hyde 2007, 2009
Modifications:
Alan Toner 2009
Holmes Wilson 2009
Jan Gerber 2009
Thomas Middleton 2008
JÃ¶rn Seger 2009

FIREFOGG
© maxigas maxigas 2007
Modifications:
adam hyde 2009
David KÃ¼hling 2009
Jan Gerber 2009
Peter W 2009
Thomas Middleton 2008
JÃ¶rn Seger 2009

 Authors 114

GLOSSARY
© adam hyde 2006, 2009
Modifications:
Edward Cherlin 2009
Holmes Wilson 2009
Jan Gerber 2009
ogg k 2009
Thomas Middleton 2008

HTML5
© JÃ¶rn Seger 2009
Modifications:
adam hyde 2009
Ali Gunduz 2009
Andrew Nicholson 2009
Jan Gerber 2009
Michael Dale 2009
ogg k 2009
Robert Valliant 2009
Silvia Pfeiffer 2009

HOSTING SITES
© TWikiGuest 2008
Modifications:
adam hyde 2009
Andrew Nicholson 2009
Holmes Wilson 2009
Jan Gerber 2009

ICECAST
© adam hyde 2006, 2007, 2008
Modifications:
Zita Joyce 2008

INTERESTING EXTRAS
© TWikiGuest 2009
Modifications:
adam hyde 2009
Jan Gerber 2009
Silvia Pfeiffer 2009

INTRODUCTION
© adam hyde 2006, 2007, 2009
Modifications:
Brylie Oxley 2009
David KÃ¼hling 2009
Edward Cherlin 2009
Holmes Wilson 2009
Jan Gerber 2009
Maik Merten 2009
ogg k 2009
susanne lang 2009
Thomas Middleton 2008

 Authors 115

JOIN FILES
© adam hyde 2009
Modifications:
David KÃ¼hling 2009
Robert Valliant 2009

INTRODUCTION
© TWikiGuest 2008
Modifications:
adam hyde 2009
David KÃ¼hling 2009
Edward Cherlin 2009
Holmes Wilson 2009
ogg k 2009
Robert Valliant 2009
JÃ¶rn Seger 2009

MIRO
© JÃ¶rn Seger 2008
Modifications:
adam hyde 2009
Holmes Wilson 2009
TWikiGuest 2008
Thom Hastings 2009

HOSTING THEORA YOURSELF
© TWikiGuest 2008
Modifications:
adam hyde 2009
Chris Double 2009
Holmes Wilson 2009
Jan Gerber 2009
susanne lang 2009

RESIZING
© Jan Gerber 2009
Modifications:
adam hyde 2009
Robert Valliant 2009
JÃ¶rn Seger 2009

INTRODUCTION
© TWikiGuest 2008
Modifications:
adam hyde 2009
Jan Gerber 2009
ogg k 2009
susanne lang 2009
JÃ¶rn Seger 2009

PITIVI
© adam hyde 2006, 2009

 Authors 116

Modifications:
Edward Cherlin 2009
Holmes Wilson 2009
Jan Gerber 2009
Thomas Middleton 2008

HOW TO PLAY THEORA
© TWikiGuest 2008
Modifications:
adam hyde 2009
Gergely MÃ¡tÃ© 2009
Holmes Wilson 2009
Jan Gerber 2009
ogg k 2009
Robert Valliant 2009
Stjepan Rajko 2009
susanne lang 2009

PLAYING SUBTITLES
© adam hyde 2009
Modifications:
Edward Cherlin 2009
Holmes Wilson 2009
susanne lang 2009

PUBLISHING
© adam hyde 2007, 2009
Modifications:
another sam 2009
Edward Cherlin 2009
Holmes Wilson 2009
Jan Gerber 2009
Mark Grandi 2009
susanne lang 2009
Thomas Middleton 2008

SPLIT A FILE
© adam hyde 2009
Modifications:
David KÃ¼hling 2009
ogg k 2009
Robert Valliant 2009
JÃ¶rn Seger 2009

INTRODUCTION
© ogg k 2009
Modifications:
adam hyde 2009
Edward Cherlin 2009
Holmes Wilson 2009
susanne lang 2009

TSS
© TWikiGuest 2008

 Authors 117

Modifications:
adam hyde 2009
Alan Toner 2009
alejo duque 2009
Holmes Wilson 2009

THEORA THEORY
© JÃ¶rn Seger 2008, 2009
Modifications:
adam hyde 2008, 2009
Alan Toner 2009
David KÃ¼hling 2009
Robert Valliant 2009

THOGGEN
© adam hyde 2007, 2009
Modifications:
David KÃ¼hling 2009
Edward Cherlin 2009
Jan Gerber 2009
ogg k 2009
JÃ¶rn Seger 2009

VLC
© TWikiGuest 2008
Modifications:
adam hyde 2009
David KÃ¼hling 2009
Dennis J 2009
Mark Hancock 2009
JÃ¶rn Seger 2009

VLC
© TWikiGuest 2008
Modifications:
adam hyde 2009
Holmes Wilson 2009
Jan Gerber 2009

VLC
© adam hyde 2007, 2009
Modifications:
Alan Toner 2009
Edward Cherlin 2009
jay maechtlen 2009
Thomas Middleton 2008
JÃ¶rn Seger 2009

WHAT IS STREAMING?
© TWikiGuest 2008
Modifications:
adam hyde 2009
Alan Toner 2009
JÃ¶rn Seger 2009

 Authors 118

WHAT IS THEORA?
© TWikiGuest 2008
Modifications:
adam hyde 2009
Edward Cherlin 2009
Holmes Wilson 2009
jay maechtlen 2009
Joshua Gay 2009
Lachlan Musicman 2009
susanne lang 2009

WHAT IS VIDEO?
© TWikiGuest 2008
Modifications:
adam hyde 2009
Brylie Oxley 2009
Edward Cherlin 2009
Holmes Wilson 2009
Lachlan Musicman 2009
susanne lang 2009

INTRODUCTION
© Mark Hancock 2009
Modifications:
adam hyde 2009
Alan Toner 2009
David KÃ¼hling 2009
susanne lang 2009
JÃ¶rn Seger 2009

Free manuals for free software

 Authors 119

http://www.flossmanuals.net/

General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Lesser General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to
any such program or work, and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is included without

 General Public License 120

limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if
its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

 General Public License 121

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

 General Public License 122

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 General Public License 123

END OF TERMS AND CONDITIONS

 General Public License 124

	Table of Contents
	Introduction
	Patent Encumbered Video
	A Better Way

	About This Manual
	1. Register
	2. Contribute!
	3. Chat
	4. Mailing List

	What is Digital Video?
	What is Theora?
	History
	The Web
	Patents and Copyright
	Other Free Video Formats

	Codecs
	Quality
	Bitrate and quality
	 Codecs and quality
	Theora and quality

	Containers
	The difference between containers and codecs.

	Playing Theora
	Integrating Theora

	VLC
	Installing
	Playing Video
	Basic Playback Controls

	Miro
	Installing
	Playing A Video

	Introduction
	 HTML5 Video
	Basic Syntax
	Parameters
	Using your own controls / player skin
	Manual Fallback options
	Javascript Based Players
	Support in Browsers

	Hosting on your own site
	Mime Types
	oggz-chop
	Allowing Remote Access
	Serving Videos via a Script

	 Hosting Sites
	TinyVid.tv
	The Video Bay
	Archive.org
	Dailymotion
	Wikimedia Commons

	Introduction
	Video Quality, Bit-Rate and File Size
	 Video Resolution and Frame-Rate
	Clipping the Frames in the Video
	Video-Audio Synchronization
	Keyframe-Interval

	Firefogg
	Installation
	Encoding your first video
	Advanced Encoding Options
	Custom Settings

	Other Uses of Firefogg

	Encoding with VLC
	Using the GUI
	Advanced Options
	Encoding from the Command Line
	Recommended Encoding Options
	Why not to use the GUI

	 ffmpeg2theora
	Basic Usage
	Adding Parameters
	Advanced Options
	--sync
	--keyint <N>
	 --framerate <N>
	 --starttime <N> --endtime <M>

	Two-Pass Encoding
	Why Two-Pass Encoding
	Using Two-Pass Mode

	Thoggen
	Selecting the DVD Titles to Encode
	Configuring the Encoding Process
	A Note on Cropping

	Subtitles
	Finding Subtitles
	Subtitle File Formats
	Editing SRT files
	Creating subtitles from scratch

	Distribution
	Embedding Subtitles
	Example commands for subtitle embedding
	Adding subtitles to an existing video

	Playing Subtitles
	VLC
	Play subtitles on a DVD disk
	Play subtitles in Matroska files
	Play External Subtitles

	Publishing
	Hosting external subtitle files along with video on a web server
	Hosting video with embedded subtitles on a web server

	Web Video Accessibility
	Accessibility user groups
	Accessible HTML5 video controls
	Providing video accessibility data
	Publishing accessible video on the Web

	What is streaming?
	Varieties of Streaming Services
	 Live Streaming

	Delivery
	Streaming Servers

	 Icecast
	TSS
	Installing TSS
	Installing on 64 bit

	Using TSS

	 Streaming with ffmpeg2theora
	Getting Ready
	Set-Up

	Streaming with VLC
	 Streaming Server Requirements
	Choosing Video File to Stream
	Stream Settings

	Saving a Theora Stream
	Extracting parts of a video

	 Introduction
	PiTiVi
	Installing
	Importing Video
	Adding Clips
	Playback
	Moving Clips
	Cutting Clips
	Deleting Clips
	Export to Ogg Theora

	Introduction
	Installing the Ogg Video Tools
	Installing from Source
	
	

	Create Thumbnails
	Creating a Series of Thumbnails
	Creating Thumbnails with Fixed Height or Fixed Width
	Advanced Functionality

	

	Creating a Slideshow
	Command Line Options
	Adding Sound to a Slideshow
	Adding a Fixed Starting Picture
	A Script for Everything

	Creating a Video Preview
	Adding a Play Button

	 Introduction
	Lossless Video Editing
	Tools

	A Bit of Theory
	Anatomy of a Theora Video
	Demultiplexing
	Page Timestamps
	Encapsulating Codec Data
	Encapsulating Theora Video Data
	Encapsulating Vorbis Audio Data

	Ogg Skeleton

	Splitting a Video File
	Cutting an Ogg File
	Using oggCut
	Video/Audio synchronization issues with oggCut

	Using oggz-chop

	Join Streams
	Ogg File Concatenation
	The Process
	Using cat
	oggCat and oggz-chop
	Syncronizing issues with oggCat

	OggResize
	Examples

	Analysing Ogg Files
	Information about an Ogg file
	Analysing an Ogg file in detail
	Tips and tricks
	Getting the Duration of a Stream
	Creating a sound byte from a portion of a video
	Adding an embedded text subtitles stream
	Getting a list of all packets in a stream in a very compressed way

	Other Interesting Things
	Video and SVG
	Video and CSS Transforms
	Video and Subtitles
	Replace background with image

	Glossary
	License
	 Authors
	 General Public License

