

Introduction

The Sardius Rotor is a vertical-shaft windmachine, developed by the Finish engineer. S. J. Savonius, during the years 1993-28.

A test program was carried out on this type cf machine by the liberace Research institute to sind out its potentialities for low cos: water pushpin:-

From the tests the following conclusions can be drawn: The Savomics Rotor, although not as efficient as a viacimaid of comparable size, fads itself to water pumping for irrigation in a:aderdereloped areas due to its low initial cost, simplicity oi materials and construction, arid low maintenance cost.
is will successfully operate in areas where the wind spaces are in the region of 8 to 12 mph and above, and the water level is not more this 10 to 15% below ground. The rotor. drive and pump are eminently suitable for home construction by the handyman with but a inv :acis and access to a welding: set. It can be mande from a variety of materials at low cost since wo critical machining is necessary.
She only important points to be observed in erecting such a machine is the proper choice for the site and careful assessment: of the average witid-spects. From ibis information the proper pump size and strode can be chosen from the Erajhes at the back of tins dumablét. It will also be necessary to provide some sort of water storage into which water can be pumped at good wiad-npects and later used for irrigation when bended. The binger the storage capacity the mure flexible tide system becomes.

The rotor described bare is the one used for all the tests carrical wat at the Brace Research Institute and was build from locally (i3arbardos) available materials in a small workshops with unskilled labor at very low cost.

The whole pumping system comprises 3 units: The rotor, the drive anil the pump.
bach unit will be death with separately. These instructions apply to the type bait a at Brace. but it is left ta the intaider's ingenuity to substatute cher materials or processes of constructdion to suit diced conditions. The drily impertent measurements to be adhered so are the proportions of the rotor itself, as shown in Fig. 1.

Fig e 8.

1. The Rotor

it consists of two 45 gabon vil dims, bisected leathturise and welded together to fora two tronatis. (Fig. 2). These two troughs are mounted between two end plates, made from $\%$ "

rise 2
plywood, 48" diameter. Ties can both be cat from one single state of standard plywood. which measures is ins. by 96 ins. The binmensons for mobbing the drum halves are given in Fits. i. The ends of tide oil dibs are simply bolted to the wooden disks with $3 / 8$ in. store bolts, washers and nuts. The shaft through the center of the roils is $1-1 / 4 \mathrm{in}$. In water pipe, which shout h extend about if ins. beyond sillier cad of the end plates. To sedate the shaft to the end plates two flanged collars are used, as slink in Fig. 3. They should be a shasta fit oat the outside of the shaft. They are ablated to the plywood with 4 bolts, and after inserting the shaft, are dirtied and secureal to it with a $3 / 4$ in. bolt. spring washer and nut. I's support

Fiz. 3.
the rotor shaft in the frame, two self-alizning ball-bearing ate reguirecl. the unces usell in thes protutyme being "Fafniar I.CD, 1 lin. Burc" but any equivalont flangelype bearina can be used.

TOP SUPPORT

Fig. 4.
 made to fit the two conds of the slatift to thes Ecarings. The lewer :alaptor must be loosk enongh to take the ecocontrice at its lowior cond, after passiag birough a chearance looke in the lower frame member.
Before mennting the rotor in the frame it must be carefully babanced to avood vibrations at high speceds. This is casily dome by placiag the assembled rotor innixomtilly on two. Imel atratght edges and addiag weights to the circumference in the center of the rotor, until perfect balance is achievel. (See Fig. 5).

Mrthoo Fer Balancing fotor.
Fig. 5 .

EOTTOM SUPRORT

THE FRAME

The frame consists of four pieces of 4 in . by 2 in. timater, as shown in Fig. 6. Tia joints should be securely bolted with gusset plates, to make it as stiff as possible. It mast be sieadied with wire stys, secarcly anchared to she ground and teasioned by turnbuchies. The dower cross member should be about i it, above the ground, but can be more it pructicable.

2. The Drive

It consists of the cecentric, horizontat connecting rod, bell crank and vertical puaid rod. Sec: $\mathrm{Hi}_{\mathrm{i}} \mathrm{F}$,
 the ead of the lovecr art:abtor and secure: is it by : tirousta bolt. "ene f:ere is cirilte: and
 fit in the bore of the bell betatra, formian the diJ end. The eccentiocily is $7 / 32$ ins. wise

 witich is beld in a splat fiting atached to the Bd. The conuectin: row of a actorejeld
 Cot the shank off abd wed a piece of 1 in. : 0 thang to it. aboat δ ins. lon: to receive tae Wionden comactiog roat. (Figo sC).

a. ADJUSTABLE PUE:IPRD TC:SEND

8. CONNECTING ROD FCR:IENO.

c. CONNECTING ROD BIG END

Fig. 8

2into
Since lle muny is u/ wimgle actimg diaphragm puafb. the two actuating rods are only in fensiom, and are therefore made of wend. 1 in. sgutars. Will tho mand dererntuicily and the flenibility of ila wool it is not necessary (a) have a tuiversal joint at the hell rank cond, The woorlen contaceting rod earries a - Cori on its small cod. with a gooc fitting pin of t: iti. dia. fluonath a hole in the woper arm of the bell crant. jose puapy rod is a similar piere of 1 in. scuare wood with an adjustable fork ead on top. ikefe: to Figs. BA and 8S. which are selfoxplanatory. - -antifraty

Tine bell crank is made from a picce of $1 / 4$ in. steel plate, cut as shown in Fig. 9. The hoics art reinlorced with welded bosses us shown and drilled after welding. If possible these bearing holex should be bushed with a bronze bush, this will incrase the life of the pin und prevent the aystem from developing为

7
bacialash. I'here should alsu be an oil hole fer lubrication. The overall width of the bushes must be a closc fit in the fork to precent any side play.

3. The Pump

The pamb selected for this anplication is a sinde actimat diaphragen pum!e. This desis, bles been chosea because it is simple to build, with minimum machanang required. It is jractically masatenamec irce and it is cheab. A!l dipe comnections are standarel 1 inch water-pabe nipjles and elloows. The valves can be any commercially availabic tyje of non-return valve.

The pump itsplf is molnted just below water leval (faliy subinerked) so that lhere is no compression in the rord on tixe suction strolie. A sercen should de fitted on the intabe valve to prevent foreign matiser entering the pump. The diaphrizm is mate irum a piece of inner tubu. $3 / 32$ to $1 / 8$ in. Ilick. The flange should be at

Bell Crank

His 8.

least $1.1 / 4 \mathrm{in}$. wille and have 8 bolts armand the circullifiquonce. for ensure a goonl sent.

As $1 ; i l l$ be well in ligs. 10 and 11 . Hue pump is invertad. the diaghragin being roperated llaroubh a stiriup altached to the pump rad. This aivev the pamble areater flexibility and is simblev than leading the rod through the pump

Fig. 10
chamber. The dimensiobs of the pump are not too critical once the diameler and stroke have been determined. The stiorul, must be diamensioned so that it provides a defintite stop on the ull and down stroke. This will preveat damage to the diaphragin duriag bambling and installation.

The main body of the promp consists of a piese of pipe or welded ringe closed at one end and having a wetted flange on the other. A flate rime bovites the clamping of the rublere daphragim. Sos i it. . 1 . Twa 1 inch water-pipe miphes are wolded on cach side for the inte: and ouldet vares. The two dises supporting the robber dizaht:sh: wew made from "Tufmal". a hard, resin inpremated fabric, bat any sitabar hard matoriat sam ixe used, ceon hardwood will io, it nothing else can be procured. The charance between dises and pumb-body is 0.055 D and the inside coeners of the dises must be well zourded to pecveat cutling the rubber on the up and down stroks. This is very important. When asscmbliag the pump, sealingcompond is appied "to the mbber between the dises and the flanges to assure a good seal. The mounting bar on top of the housing must be very stiff and can be vither welded or bolted oo the top plats. If bolts are cusid tiey must be a good fit and should have copper washers to insure against leaks. It is most important when mountina the pump in the well, to secure the mannting bar very iirmly either by concretiong. or bolting to a couple of cross-timbers in the well. 'the tension forces in the pump-rod are in tiae retion of 200 lbs . and at high revolutions llis hammering will soon shate loose a weakFinounting. The pump-rod should be deft longer tian: the reciaired lenath before mounting the puin! in the well. After the pamp has been installed and the bell crank is mounted on the frame, the bell crank is brought to its neutral position and the adjustable fork-cad of the pamp-rod to halfing on the thread. The rod is now cut so that it will fit filly into the tube of the fork, drilled and sectarec with 4 bolts, as shown in Fig. EA. Now the pamprod is palled up against lise stop; the eccentric turned to full stroise and the fort adjusied so that the pin goes ireely through the hole in the bell crank. Now turn the furb another one and a half turns

to lengthen the rod. insert the pin ama secure it. This witt prevent the ramp hitting the ton at its fall stroke.

This adjushnemt mas be rarried onl sers rarifully, otherwise the mand will be wrecked during the first monemt of aperation. It might also be necessary to install one or two pumprod andides is the roil is konger litat 10 oft. They should be fitted after the whole system is fixed in phate. (Sece fig. 12). Thes mant not touch the bump-rod whon it is stationary.
Selecting the Diameter \& Strake of Pump
On graphuNo. b. select the head of water tw be pamped. This is the vertical distance be tween the water lewe in the well. and the ontlet in the resorvoir. The graph is atareatly coraceted for the dyamic head, which includes the frice tion in the pipe and the valves. From the head Tiaia, onf water on the left scate draw a horizontal speed curve and draw a sertical liae tirough this paint. This uitl intersect one of the four
tec.t.-straight lines marked: \}ump 1, 2, 3, and 4. Each is for one pump of a given dianeter and eives on the right hand scale the prorece stabe for this particular punj) and heal comi,ination. , =00 mesera
Exumple: (Follow dolted line on graph)

$\because \%$ Sraw horizontal tine at 15 ft . head.
at intarsection witiz 10 migh. curve draw vertical line.
It intersects strabht line of punp 2
From this point draw horizontal line to the dian right hand stroke-scale.

This gives a stroke of 0.50 in .
The pump has to operate at this stroke so give the best eificiency of the rotor. To obtain ti.is stroke from the beil crank, proced as follows: The ratios of stroke and distance fron pivot are equal.

Therefore: $11.4375: 6=0.56: x$
Dreme $\quad x=\frac{6 \times 11.56}{0.4375}=7.7$
The horizontal arm of the bell crant will have to le 7.7 ins long to give a pump stacke ot 0.56 in . Fig 9.

The bottom seale of Graph No. 1 sives the actual volume in cujuc ins. yer strolle pampea at various wind speeds.
This makes it possible to determine the size and stroke of any other available punp, sucb as a piston pump.

Fiad the head to be pumped and the wind speed as before, draw a vertical line from this point to the bottom scale and read the volume per stroke. Divide this voluale by the bistoz area and this will be the strode requirac.

If, for example, a piston pamp of 2 in . ciameter were available the head is aenin 15 :t. and the wind speed 10 mph ., contianic the
vertical dotted lame to the base seale adad read uff 13.3 ru . ins./atroke. 13.3 divided by 3.14 (area of piston) sives a storhe of 4.23 ins.

Til whan lhan wohe of 1.23 ins. from the bell crank, it would be advisable to alter the eccentricity to ade a more suitahbe ratio at the bell ramk. If the recenbieity is made is in.. then the stroke of the comarting rod becomes 1 ith. This heaves a ratio of $1: 4.23$ at the bell crank, which cond be divided into a vertical leg of say, ex ins., amd a horizontal leg of 10.5 ins. lonk. The bell cank would have to be shaped to confora to these measarements.
If a piston. manp is used for this purpose, it must be a sibicle actiag pump, mounied below water level and operated so that the pump rod is only in tension. This will assure that there are no problems either due to buctiling of the pump rod and connecling rod. or trouble with primins of the pump.

Estimating the Cutput of the Pump

(iraph No. 2, Curve A, wives the ontput of the puinp at the selected (rated) windspeed for the site in question, when manping against a bead of $\mathbf{t} 0$ fect. The output at the rated windsured when pmmping akainst a head other tham 10 fect may be calculated from Curve d by simple proportion. For example, the pump which has alreaty beea selceted from Grapl: No. 1, to pump agninst a head of 15 feet most efficiently in a windspeed of 10 mph ,. will have an output at 10 mph . of

$$
W=272 \times \frac{10}{15}=1 \times 1 \text { Imperial gallons iper }
$$

hour.
Note that, at wialspecis other than the ratell windspeed, the pump will bive all output somewhat lower than the figure read from Curve A of Giraph No. 2, as it will no longer be operating at its best efficiency. For example, the performance of a particular pump is indicated by Curve 13 on Graph No. 2, which refers to a pump with a bore of $7-1 / 4 \mathrm{in}$. and a stroke of $7 / 16 \mathrm{in}$. The stroke has been selected to give optimum performance at a windspect of 9.2 mph., and Curve 1 coincides with Curve A at this windspeed. However, as the windspeed increases (or decreases) prodressively beyond the rated windspeed of 0.2 mph.., the relative performance of the pump drops off and the aetual oufjut, read from Curve B, becomes a progressively smaller fraction of the ontimum ontpus. reall from liurve A.

Pumping at Heads of More Than 30 Feet

fin this beaffet eonsideration has bern restricted to a very low cost pumb and the simplest form of power transmission system. The cquipment described above has been tested when pumping against heads of up to 3 feet.
 water In areater haidhls than 30 lect. hat if
 hiahber windsumedr the strexsers in the panap and transmission increase consideratly and mad
 sophisticatod athd herefors mare expmates There would come a perint when the simptictit

 beriments have vet been made an has direction lint it is mopowed to do 6 , 1 l the acar fature.
lomil such resulla can be whtallad, it is tap: $\}$ the buibler to ataph the present system for different comditoms and regurements. beating in mind that the system here described applie only to the bumberate worl sumeds and he:at biven in this pamplitet.

Cost and Matericls

It is extremely hiffirult the define the actua cost of a projeri hity this in dollars abd rents As in any "Do-lt-Yonself" project, the binges part of the job is the labour. which is assumed to be fref. Depending on the skill, patiend and resources of the home-buildier, even tha cost of the materials ran vary considerably.

In the prototype deseribed here, anty thl ball bearings, wood for the frame, and plywood for the rotor were purchased new. All nothed material was found around the place. The bac of a garage or smill machine shop is usually geod place to look for things like pieces of pipe, angles, bolts, ete. If no welding eguip ment is at hand, all the pieces to be welde shonld be earefully prejared, wired or champe toatther and taken to the nearest weldind shop. If eversthing is properly prepared, in actual welding for the whole job will not tak longer than 1 hour. The only parts. requirin machining are the shaft adaptors, the eceentri for the rotor, the flanges and dises for thy diabhragal pmup. All other work reguires drill only.

Fially, to give a monata idea of the cost. th main items are listed here as puacimsed
Barbados, in the equivatent of U.S. Dollars:-
2 Oil drums (grood condition) .. $\$ 2.3$
2 Selfaliathing Ball Beatings, flange type
3 fi. 2×4 rimber $\quad . . \quad 7.5$
1 sheet $1 / 2$ in. Plyworid (4 ft. x 8 ft.) 12.5
sort. $1 / 8$ diameter Gidvamized Steel
Wire 31
f $1 / 4 \times 4$ ins. Turn Buckles $\quad . \quad 3.8$
7 11. 1-1/f 1.1). Wither lipe (Rotor shaft)
11% in. Bawe Ball Bearing (bigendi)
1.5 fl. Dasiac libu (helivery)

Bolts, Xuts. Washers, des. .. \quad.
Totat: U.S. 53.0

1．The dianhragn should be of Eairly thick ruaber
－ruionar Erom hoavy eruck of Ezactoz inner tuba is cood
－ribior that is too thin or tou flexible is not gatiofactory si：ica under a datro hear tho disomation of tho diapizara terds to regcite the fuld dianhazag dieplacemant．

2．The strolio may woll have co be increased to one or two inches，de－ pending on the rubber fiesidility．In ordor to ofsect this，it nay bo nocussary ro incronso tso clouranco butwoen tho discs and the pump hody．
b．It was found，in practica in voiy remite conditions，that a fair bit of axpozrinntition was neecad in ordor to catorimino tivo bast location of the purn rolativa to both tha sousce ane the dischatrge．
 head then beccios too grast and diabirarjn difoxmarion hecomis very significant．For oux shy purip．a saction beas oi aizout 6 to a feet with a prossura hoad of roze 3 to 10 feet was folt to bo ubout the optcman conditions．

4．The prop rod and connecting rod end connections should 203 finm． Any play in those tabes away frcin tho longth of stroko．

ールニニニニニニニーー

Brace Research Institute
\therefore MacDonald College of McGill University
Ste．Anne de Bellevue 800
Quēbec，Canada

ง．

hOLISNO CARYMCUA

Cada ano se presenta una tragedia en los Llanos Orientales de Colombia cucndo se mueren milas de vacas por falta de agua. En Casanare las distancias entre los rios y cainos (que son las unicas fuentes de agua curano te el verano) son largas y el ganado se ve obligado a mantencrse cerca $a l$ agua, y por 10 tanto se accbua los pastos aledaños al sgua, o a caminar distancias demasiado grandes. En Neta y Vichada, los canos y rlos veraneros son mucho mas abundantes pero a medida que el agua baja se aumenta el riescio de que el canado (cspecialmente las vacas viejas) se cirtierre: cn busca de aqua y 11 no lo sacan dentro de pocas horas de habierse enterrado, se muere.

La cragedia descrita parece absuria al darse cuenta que an todas estas regiones existe agua subterranea abundance a muy pocos metros de proRundidad.
[il ICA y el CLAT en su preocupacion por encontrar una solucion ecoromica a problema de agua han instalado un molino experimental en Carimagua que parece muy promisoiio. El molino represenca una modificacion de un ciscfio realizado, probado y publicado por la "Brace Research Starion" en zaro bados. El dicefo fue basado en un xocor invencado por el finlandes Savomius en 2925.

El Molino es de construccion muy sencilla, bajo costo y facil mantenimiento. Se ha estimado que el costo de materiales, incluyendo trabajos de raller que no serian factibles en el camo seria de aproximadamante $\$ 2.500$ (pesos colombianos equivalentes a $\$ 125.00$ U.S.) El costo esta babado en un pozo de 9 metros de profundidad, con anillo de boca y tapa. en concreto reforzado y en una torre de 8 metros hecha de madera rolliza en forma de cripode con bases de concreto.

En la zona de Carimagua se ha estimado el costo del molino, hecho por contrato e incluyendo el molino, la escavacion del pozo, hechura del andllo y la tapa en concreto y la corre en madera rolliza cortada en Ia Eince en $\$ 4.500 .00$ ($\$ 225.00$ U.S. $)$

No existen datos concretos sobre rendimiento, Se midio en forma basrante rastica un rendimiento de aproximadamente 500 galones/hora ciane do el nival del agua estaba a 8 metros, con un cilindro de molino de $3^{\prime \prime} y$ una brisa estimada da $6-8 \mathrm{~km} / \mathrm{hora}$. La carrera del piston era de 2 cmt . Se puede variar la carrera del piston facilmente segin la essse cion. En cpoca de verano cuando hay mucha brisa, parece lidicado aunentar la carrera y asi reducir la velocidad del rotor. En cambio, en apo-i ca de davierno, as convenicnte reducir la carrera, para que al colino coa mience a bejocar con una brisa minima.

BRACE RESERRCH METITUTE
macsonalo college of mcoill university
STE. ANNE DE EELLEVUE 800
QUEBEC, CANADA.

