from collections import Counter
import math
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
- Provided data
data = ‘3=U³\\¬¶6|cò\\u000fã£Ü\\u001bn>]UãÊOM³YWl®cÕ\\u0017«ÔñqZÓZÖø\\u005cæ\\u0017ÙGµZ.ôSv²5\\u001f;Ì͸Õ\’Ö<\\u001eYã.ËôðâøxãµtøªÓ3/VÍÆµrÜfÚczlzjÎvfñfÎÔO\\u00177iËG§tÍ£=ðÙ\\u0017챺+¼=êqÇV\\u005cG«ig\‘]+>geµÜñ\\u001e¶±§ÊÚx|<͸|¥ìáÚ.é\\u001bn£³¦]véeôÖ\\u001e¼Æv\’§êÌvtn6Ó¥³læ:µl\‘>jélOfÇ7ÉkÌWÔ\\u001fSÕå\’§\\u001e\\u001fÉ®\\u001b§\\u001bnáx;Åô¥¶gu¦ÊÍcÓÖÑ©¹ð¶KêÊ>\\u001b;9«ª|K¹\\u001eÜ£;.¶ÅWðø´Ü£Õæxs\\u005c®\\u005cìÌuÑÓimn²\\u001f6Ö\\u005c]VÓ¬êÆôðkcm\\u005cÚ¦|iv\\u001døUOK³.>xm6vf¹en²vMñ.OSkS:sM¶´\\u001f<;ð;\\u001eq;67MyjVÚcz²µM§Å³±¬O+òtm3¦©ÓGn9y<ÇZ;\\u001eÅÚ>ÑÓØ²¹\\u001eÚY/Gãð³\\u001by£zÒÎNµxø\\u005cUám\\u001eÕVκ67.z¼rÜc¹l³ÒñãNγ.Çfº9ñâ®l±¶<¶GÙ\\u0017§isêÚ¦øt«¥/él7:Õ¸ñ5>lñ[3æØ|SnGѵ:>â;Ôj>-3ÖØø¬Õ+Ó\\u001bmZÙÃ\\u001dØÍc«9ñæVËÌW<ÕY³:êqéiGÓ\\u005cÜéÖZgSÙNéÌnÌ=qø®ÃÓ6^<\\u0017ÍK[¥å\\u001dæÔWSs:®jvÊ^j«:ÍGñSåÑ\\u005cÕ^\\u001b^¦Ú\\u000fÇrÇSÚ´yqì\\u001dã´yɵ+>^jYsé¼ä;£ZÇzrãV/ÅÓNvM«Ëi].§±;:ñ6ͬô-ºÅò±WÌ^Åy:Nvè\\u000f¼cÖ5^ª\\u001f-ÖY=KñGÓ-Õ´ØUnѶªòÔôr¼<«.W5åm¥|Ñãª>fòØ7âñM§9^\\u000f^Åã±|eêÑÓr;¬ôVSÇtÇ5znµ:7Mnq\\u001f6|ÆÍæK¹xã¸+³NÇ£áñcÙÆìÊ[yK¼Nãx;¶ÙÌkâ³\\u001eÅÜ´-[ÎrSò\\u001f\‘>Ã|:mÆ|²ÉØ«£Ü£¶´Ír§3Ç<¶xñʦ/âê<ôVµÒ/Mu+òاªyj¹KÕfná|\\u001et\\u001flkÅkzNôÚtÌÔêjøÃËVu´uÌÙ|¼èêèÜ´m馫£ºq츹+ÖèÜG\\u000fÜèË\\u001b\\u001bºxvÑg´OxËÒ\\u001f<[MÚô¥zÑ/âÖÑMæUY|5µ6¶xÓ©\\u001e³â®ä|Zg/á§rW©§\\u005cÙØ|ªn-Õª>MÇÑ/ªµtÎr¶Ø\\u001fâò[Ô\\u001fiÇä³´µÖÌn¬mø3s3|jå¼É§\\u001bu¥ø©Oz<7|ÃÓf®\\u001bø\\u001bê3g.Ó±.¼eueô©ñg\\u001dܱÚjWÆ7ry-ê²/Ìê+ÜÔ\\u001fìfðÍS娼ܱåeéWjOÃOÒÊ7èÆ6ÕØº6s;ÃñG˱éMãKºZæÚ\\u001e¹GêU\\u001f|èrv¸vqÖVô9nnÆè\\u001fÅ\\u001fKºµ¬º\\u001eµð/KW9ÙjÎU6ìÉ\\u001f\\u001eÕG;èÜi¼\\u001e^ávù£=¥3Ü3ktytºKÎòtÓ\\u000fº:^-µÑåfµYváòONO-ÙUµÆË3µ±¶©n<§ò’
def analyze_data(data):
frequency = Counter(data)
total_chars = sum(frequency.values())
expected_frequency = total_chars / len(frequency)
entropy = -sum((freq / total_chars) * math.log2(freq / total_chars) for freq in frequency.values())
print(‘Entropy:’, entropy)
print(‘Character Frequency:’)
for char, freq in frequency.items():
print(f’{char}: {freq}’)
- Print the actual byte values of the first few bytes of the data
print(‘Actual byte values of the first few bytes:’, data:20)
- Define a new custom magic number based on the actual byte values observed
custom_magic_number = b’3=U\xb3\xac\xb66|c\xf2\x0f\xe3\xa3\xdc’
- Ensure data is in bytes format
if isinstance(data, str):
data = data.encode(‘latin-1’) # Convert to bytes using latin-1 encoding
- Check if the first few bytes match the custom magic number
print(‘Checking for custom magic number…’)
print(‘Actual byte values of the first few bytes:’, data:20)
if data.startswith(custom_magic_number):
print(‘File format identified: Custom File Format’)
else:
print(‘File format could not be identified’)
- Known file headers (magic numbers)
file_signatures = {
b’\x89PNG’: ‘PNG Image’,
b’GIF8’: ‘GIF Image’,
b’\xFF\xD8’: ‘JPEG Image’,
b’%PDF’: ‘PDF Document’,
b’PK’: ‘ZIP Archive’,
b’RIFF’: ‘WAV/AVI File’,
b’\x7FELF’: ‘ELF Executable’,
b’\x42\x5A’: ‘BZ2 Compressed’,
b’TXT’: ‘Text File’,
b’\xFF\xFB’: ‘MP3 Audio’,
b’\x00\x00\x00\x20ftyp’: ‘MP4 Video’,
b’<!DOCTYPE html>’: ‘HTML Document’,
b’<?xml’: ‘XML Document’,
b’PK\x03\x04’: ‘ZIP Archive (File Header)’,
b’\x52\x61\x72\x21’: ‘RAR Archive’,
b’\x1F\x8B’: ‘GZIP Compressed’,
b’\x4D\x5A’: ‘EXE Executable’,
b’\x30\x26\xB2\x75’: ‘WMV Video’,
b’\x66\x74\x79\x70’: ‘FLV Video’,
b’\x7B\x5C’: ‘JSON Document’,
b’\x25\x50\x44\x46’: ‘PDF Document’,
b’\x4D\x53\x57\x4F’: ‘MS Word Document’,
b’\x4D\x53\x45\x58’: ‘MS Excel Document’,
b’\x4D\x53\x50\x50’: ‘MS PowerPoint Document’,
b’\x4D\x53\x41\x43’: ‘MS Access Database’,
b’\x4D\x53\x50\x53’: ‘MS Project File’,
b’\x4D\x53\x56\x42’: ‘MS Visio File’,
b’\x4D\x53\x49\x4D’: ‘MS Image File’,
b’\x4D\x53\x49\x43’: ‘MS Icon File’,
b’\x4D\x53\x49\x42’: ‘MS Bitmap File’,
b’\x4D\x53\x49\x50’: ‘MS Picture File’,
b’\x4D\x53\x49\x47’: ‘MS GIF File’,
b’\x4D\x53\x49\x4A’: ‘MS JPEG File’,
b’\x4D\x53\x49\x50\x4E\x47’: ‘MS PNG File’,
b’\x4D\x53\x49\x42\x4D\x50’: ‘MS BMP File’,
b’\x4D\x53\x49\x43\x4F\x4E’: ‘MS ICO File’,
b’\x4D\x53\x49\x43\x55\x52’: ‘MS CUR File’,
b’\x4D\x53\x49\x41\x4E\x49’: ‘MS ANI File’,
}
- Update the file_signatures dictionary with additional known signatures
file_signatures.update({
b’3=U’: ‘Custom Format’,
b’3=U\xb3’: ‘Possible Format’, - Add more signatures as necessary
})
- Check for known file signatures
for signature, file_type in file_signatures.items():
if data.startswith(signature):
print(f’Identified file format: {file_type}’)
break
else:
print(‘File format could not be identified’)
- Frequency Test
freq_deviation = {char: freq – expected_frequency for char, freq in frequency.items()}
print(‘Frequency Test Deviation:’)
for char, deviation in freq_deviation.items():
print(f’{char}: {deviation}’)
- Runs Test
runs = 0
last_char = None
for char in data:
if char != last_char:
runs += 1
last_char = char
print(f’Runs Test: {runs} runs found.’)
- Chi-Squared Test
chi_squared = sum((freq – expected_frequency) ** 2 / expected_frequency for freq in frequency.values())
print(f’Chi-Squared Test Statistic: {chi_squared}’)
- Extract features
features = {’entropy’: entropy}
features.update(frequency)
df = pd.DataFrame(list(features.items()), columns=’Feature’, ’Value’)
print(‘Extracted Features:’)
print(df)
- Visualize character frequencies
plt.figure(figsize=(12, 6))
sns.set_style(‘whitegrid’)
sns.barplot(x=list(frequency.keys()), y=list(frequency.values()))
plt.title(‘Character Frequency Distribution’)
plt.xlabel(‘Characters’)
plt.ylabel(‘Frequency’)
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()
- Visualize entropy
plt.figure(figsize=(8, 4))
sns.set_style(‘whitegrid’)
plt.plot(entropy, marker=‘o’)
plt.title(‘Entropy Visualization’)
plt.xlabel(‘Segment’)
plt.ylabel(‘Entropy’)
plt.grid()
plt.show()
- Call the analyze_data function
analyze_data(data)
The term Custom Format The term Custom Format refers to a file format that is specifically defined or created for a particular application or use case, rather than being a widely recognized standard format like PNG, JPEG, or PDF. Here are some key points regarding custom formats: Key Characteristics of Custom Formats Magic Numbers: Custom formats typically have unique magic numbers (byte sequences) at the beginning of the file that help identify the format. In your case, the magic number was defined as b’3=U\xb3\xac\xb66|c\xf2\x0f\xe3\xa3\xdc’. Usage: Custom formats are commonly used in proprietary software, specialized data storage, or when a specific data structure is required that standard formats cannot accommodate. Interoperability: Since custom formats are not standardized, they may not be easily readable or writable by other applications unless those applications are specifically designed to handle that format. Understanding Your Custom Format If you have any specific questions about the data contained in this custom format or how to work with it, feel free to ask! |
|
the file represents binary data |
|
I need help with knowing what this code is for or how you think it was made |
|
Raw Data: Processing line: 3=U│\¼╢6|c≥\u000fπú▄\u001bn>]Uπ╩OM│YWl«c╒\u0017½╘±qZ¡╙Z╓°\u005cµ\u0017┘G╡Z.⌠Sv▓¡5\u001f;╠═╕╒’╓<\u001eYπ.╦⌠≡Γ°xπ╡t°¬╙3/V═╞╡r▄f┌czlzj╬vf±f╬╘O\u00177i╦Gºt═ú=≡┘\u0017∞▒║+╝=Ωq╟V\u005cG½ig’]>ge╡▄±\u001e╢▒º╩┌x|<═╕|Ñ∞ß┌.Θ\u001bnú│ª]vΘe⌠╓\u001e╝╞v’ºΩ╠vtn6╙Ñ│lµ:╡l’>jΘlOf╟7╔k╠W╘\u001fS╒σ’º\u001e\u001f╔«\u001bº\u001bnßx;┼⌠Ñ╢guª¡╩═c╙╓╤⌐╣≡╢KΩ╩>\u001b;9½¬|K╣\u001e▄ú;.╢┼W≡°┤▄ú╒µxs\u005c«\u005c∞╠u╤╙imn▓\u001f6╓\u005c]V╙¼Ω╞⌠≡kcm\u005c┌ª|iv\u001d°UOK│.>xm6vf╣en▓vM±.OSkS:sM╢┤\u001f<;≡;\u001eq;67MyjV┌cz▓╡Mº┼│▒¼O≥tm3¡ª⌐╙Gn9y<╟Z;\u001e┼┌>╤╙╪▓╣\u001e┌Y/Gπ≡│\u001byúz╥╬N╡x°\u005c¡Ußm\u001e╒V╬║67.z╝r▄c╣l│╥±πN╬│.╟f║9±Γ«l▒╢<╢G┘\u0017ºisΩ┌ª°t½Ñ/Θl7:╒╕±5>l±[3µ╪|SnG╤╡:>Γ;╘j>-3╓╪°¼╒+╙\u001bmZ┘├\u001d╪═c½9±µV╦╠W<╒Y│:ΩqΘiG╙\u005c▄Θ╓ZgS┘NΘ╠n╠=q°«├╙6^<\u0017═K[Ñσ\u001dµ╘WSs:«jv╩^j½:═G±Sσ╤\u005c╒^\u001b^ª┌\u000f╟r╟S┌┤yq∞\u001dπ┤y╔╡+>^jYsΘ╝Σ;ú¡Z╟zrπV/┼╙NvM½╦i].º▒;:±6═¼⌠-║┼≥▒W╠^┼y:NvΦ¡\u000f╝c╓5^¬\u001f-╓Y=K±G╙-╒┤╪Un╤╢¬≥╘⌠r╝<½.W5σmÑ|╤π¬>f≥╪7Γ±Mº9^\u000f^┼π▒|eΩ╤╙r;¼⌠VS╟t╟5zn╡:7Mnq\u001f6|╞═µK╣xπ╕+│N╟úß±c┘╞∞╩[yK╝Nπx;╢┘╠kΓ│\u001e┼▄┤-[╬r¡S≥\u001f’>├|:m╞|▓╔╪½ú▄ú╢┤═rº3╟<╢x±╩¡ª/ΓΩ<⌠V╡╥/Mu+≥╪º¬yj╣K╒fnß|\u001e¡t\u001flk┼kzN⌠┌t╠╘Ωj°├╦Vu┤u╠┘|╝ΦΩΦ▄┤mΘª½ú║q∞╕╣+╓Φ▄G\u000f▄Φ╦\u001b\u001b║xv╤g┤Ox╦╥\u001f<[M┌⌠Ñz╤/Γ╓╤¡MµU¡Y|5╡6╢x╙⌐\u001e│Γ«Σ|Zg/ߺrW⌐º\u005c┘╪|¬n-╒¬>M╟╤/¬╡t╬r╢╪\u001fΓ≥[╘\u001f¡i╟Σ│¡┤¡╡╓╠n¼m°3s3|jσ╝╔º\u001buѰ⌐Oz<7|├╙f«\u001b°\u001bΩ3g.╙▒.╝eue⌠⌐±g\u001d▄▒┌jW╞7ry-Ω▓/╠Ω+▄╘\u001f∞f≡═Sσ╪╝▄▒σeΘWjO├O╥╩7Φ╞6¡╒╪║6s;├±G╦▒ΘMπK║Zµ┌\u001e╣GΩU\u001f|Φrv╕vq╓V⌠9nn╞Φ\u001f┼\u001fK║╡¼║\u001e╡≡/KW9┘j╬U6∞╔\u001f\u001e╒G;Φ▄i╝\u001e^ßv├╣ú=Ñ3▄3ktyt║K╬≥t╙\u000f║:^-╡╤σf╡Yvß≥ONO-┘U╡╞╦3╡▒╢⌐n<º≥ |
|
Proprietary Data Format: This could be a format used by a specific application or system that encodes data in a unique way. Often, proprietary formats are not documented publicly. |
|
vk.com/@soluzka-overall-the-primary-data-type-being-processed-in-the-code-is |
|